
II. Foundations of Multivariate Analysis

A Some Matrix Algebra

Partitioned Matrices

A
(m+q)×(n+r)

=

A11
m×n

A12
m×r

A21
q×n

A22
q×r

 B
(n+r)×(s+t)

=


B11
n×s

B12
n×t

B21
r×s

B22
r×t

 .
− Since all of the submatrices are conformable,

AB =

 A11B11 + A12B21 A11B12 + A12B22

A21B11 + A22B21 A21B12 + A22B22


− If A11 and A22 are square (m = n and q = r) and

A12 = A′21 = 0,

|A| = |A11| |A22|
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− If A11 and A22 are both square and nonsingular,

|A| = |A11|
∣∣A22 −A21A

−1
11 A12

∣∣
= |A22|

∣∣A11 −A12A
−1
22 A21

∣∣
analogous to∣∣∣∣∣∣ a11 a12

a21 a22

∣∣∣∣∣∣ = a11a22 − a21a12

= a11

(
a22 −

a21a12
a11

)
= a22

(
a11 −

a12a21
a22

)
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Eigenvalues and Eigenvectors

λ is an eigenvalue of the square matrix A and x is the

corresponding eigenvector if:

Ax = λx

or

(A− λI)x = 0

• If |A− λI| 6= 0, then (A− λI) has an inverse and

(A− λI)−1(A− λI)x = (A− λI)−1 0

⇒ x = 0 is the only solution

• So, set |A− λIp| = 0︸ ︷︷ ︸
“characteristic

equation”

and solve for λ

• Eigenvalues λ1, . . . , λp accompanied by eigenvectors x1, . . . ,xp.
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Orientation of eigenvectors is what’s important. Length is

arbitrary — kx1, . . . , kxp equally good. (We usually choose

eigenvectors such that x′x = 1.)

• Spectral decomposition of A

Let

C = matrix containing normalized eigenvectors of A

= [x1 x2 . . . xp]

and let

D =


λ1 0 · · · 0

0 λ2 · · · 0
...

...
. . .

...

0 0 · · · λp


Note that C is orthogonal (so I = CC′ = C′C)
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A = ACC′

= A[x1 x2 . . . xp]C
′

= [Ax1 Ax2 . . . Axp]C
′

= [λ1x1 λ2x2 . . . λpxp]C
′

= CDC′

= λ1x1x
′
1 + λ2x2x

′
2 + · · ·+ λpxpx

′
p

Also,

D = C′AC
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Positive Definite & Nonnegative Definite Matrices

• A
p×p

is symmetric

• If x′Ax > 0 for all x 6= 0, then A is “positive definite (p.d.)”

• If x′Ax ≥ 0 for all x 6= 0, then A is “nonnegative definite

(n.n.d.)”

• If x′Ax ≥ 0 for all x 6= 0, with x′Ax = 0 for at least one

x 6= 0, then A is “positive semi-definite (p.s.d.)”

– In other words, if A is n.n.d., but not p.d., we say A is p.s.d.

Easy check for these properties:

1. Eigenvalues of a positive definite matrix are all positive.

2. Eigenvalues of a nonnegative definite matrix are positive or

zero (with rank(A) = number of positive eigenvalues).
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Trace and Determinant of a Square Matrix A
p×p

= (aij)

− tr(A) =

p∑
i=1

aii

− tr(AB) = tr(BA)

If A has e’vals λ1, . . . , λp

− tr(A) =

p∑
i=1

λi

− |A| =
p∏
i=1

λi (Practice: show these two statements are

true)
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Square-root and Inverse matrices

The spectral decomposition of symmetric A
p×p

:

A = CDC′

• A1/2 = CD1/2C′

where D1/2 =


λ
1/2
1 0

λ
1/2
2

. . .

0 λ
1/2
p
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Note: A1/2A1/2 = CD1/2C′CD1/2C′

= CD1/2D1/2C′

= CDC′

= A

• A−1 = CD−1C′

where D−1 =


1
λ1

0

1
λ2

. . .

0 1
λp
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Note: A−1A = CD−1C′CDC′

= CD−1DC′

= CC′

= I
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• Suppose A =

A11 a12

a′12 a22


A−1 =

1

b

 bA−111 + A−111 a12a
′
12A

−1
11 −A−111 a12

−a′12A
−1
11 1


where b = a22 − a′12A

−1
11 a12

• Suppose A
p×p

= B + cc′

A−1 = B−1 − B−1cc′B−1

1 + c′B−1c
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Random Vectors and Matrices

• X = (xij) is a random matrix (matrix of r.v.’s)

• E{X} =


E{x11} E{x12} · · · E{x1p}
E{x21} E{x22} · · · E{x2p}

...
...

. . .
...

E{xn1} E{xn2} · · · E{xnp}


• If X and Y are random and A and B are constant:

E{X + Y} = E{X}+ E{Y}

E{AXB} = AE{X}B
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• If x
p×1

is a random vector

E{x} =


µ1

µ2

...

µp

 = µ
p×1
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Σ = var{x} (← or “cov{x}”)

= E{(x− µ)(x− µ)′}

=


σ11 σ12 · · · σ1p

σ21 σ22 · · · σ2p
...

...
. . .

...

σp1 σp2 · · · σpp





Notes:

1. σij = σji

2. xi indep. of xj

⇒ cov(xi, xj) = 0

P = corr{x} =


1 ρ12 · · · ρ1p

ρ21 1 · · · ρ2p
...

...
. . .

...

ρp1 ρp2 · · · 1




Note:

ρij = ρji
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• Let

x =



x1
...

xq

xq+1

...

xp


=

x1

x2

←
←

q × 1

(p− q)× 1

E{x} =

µ1

µ2



var{x} =


Σ11︸︷︷︸
q×q

Σ12︸︷︷︸
q×(p−q)

Σ21︸︷︷︸
(p−q)×q

Σ22︸︷︷︸
(p−q)×(p−q)
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• Let B
r×p

and C
m×p

be constant matrices and let b
r×1

be c
m×1

constant vectors

E{Bx} = Bµ ← r × 1

var{Bx} = BΣB′ ← r × r

cov{Bx,Cx} = BΣC′ ← r ×m

E{b′x} = b′µ ← scalar

var{b′x} = b′Σb ← scalar

cov{b′x, c′x} = b′Σc ← scalar
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B Expected values for x̄ and S

Let xi, i = 1, . . . , n, be an i.i.d. random sample with E{xi} = µ

and var{xi} = Σ.

E{x̄} =
1

n
(E{x1}+ E{x2}+ · · ·+ E{xn})

=
1

n
(nµ)

= µ
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var{x̄} = E{(x̄− µ)(x̄− µ)′}

=

.
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Note:
n∑
i=1

(xi − x̄)(xi − x̄)′

=

n∑
i=1

(xi − x̄)x′i −

(
n∑
i=1

(xi − x̄)

)
x̄′

=
n∑
i=1

xix
′
i −

n∑
i=1

x̄x′i

=
n∑
i=1

xix
′
i − nx̄x̄′
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E{S} = E

{
1

n− 1

n∑
i=1

(xi − x̄)(xi − x̄)′

}
=

E{Sn} = E{n− 1

n
S} =

n− 1

n
Σ

20



C Geometry of the Sample

Vectors

• Length of vector x = (x1, . . . , xn)

Lx =
√
x21 + · · ·+ x2n =

√
x’ x

• For some constant c,

L(cx) = |c|Lx

• Angle between vectors
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cos(θ) = cos(θ2 − θ1)

= cos(θ2) cos(θ1) + sin(θ2) sin(θ1)

=

(
y1
Ly

)(
x1
Lx

)
+

(
y2
Ly

)(
x2
Lx

)
=

x′y

LxLy

So

x′y = 0⇐⇒ cos(θ) = 0⇐⇒ θ is 90◦ or 270◦

Thus x′y = 0 means x and y are perpendicular.
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Projections

Projection (shadow) of y onto x

=
y′x

x′x
x

Length of projection of y onto x

=

∣∣∣∣y′xx′x

∣∣∣∣Lx =
|y′x|
L2

x

Lx =
|y′x|
Lx

= |cos(θ)| · Ly since y′x = cos(θ)LyLx
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Projections of Sample Vectors

• Viewing X
n×p

=


4 1

−1 3

3 5

 as n points in p-space,

x̄
p×1

=
1

n
1′X

= (x̄1, x̄2, . . . , x̄p)
′

= the center of gravity

(Fig 3.1 from JW)
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• Alternatively, view X
n×p

=
[
x(1),x(2), · · · ,x(p)

]
as p points in

n-space

(Fig 3.2 from JW)

– Projection of x(i) onto unit-length vector 1√
n
1n is:

x′(i)

(
1√
n
1
)

(
1√
n
1
)′ (

1√
n
1
) 1√

n
1 =

 1

n

n∑
j=1

xji

1 = x̄i1
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(Fig 3.3 from JW)

– Note: Centered (mean-corrected) version of x(i) (also called

“deviation vector”) is

x∗(i) = x(i) − x̄i1
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– Note:

Length of x∗(i) =
√

x∗
′

(i)x
∗
(i)

=

√√√√ n∑
j=1

(xji − x̄i)2

=
√

(n− 1)sii

=
√
n− 1si

OR sii =
1

n− 1
L2

x∗
(i)

Similarly, sij =
1

n− 1
x∗
′

(i)x
∗
(j)
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• Since, in general, y′z = LyLz cos(θ), it follows that

cos(θ) =
x∗
′

(i)x
∗
(j)

Lx∗
(i)
Lx∗

(j)

=
(n− 1)sij√

(n− 1)sii
√

(n− 1)sjj

=
sij√
sii
√
sjj

= rij

∴ correlation ith and jth variables is cosine of angle between

x∗(i) and x∗(j)
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D Generalized Variance

Desire a single value which summarizes variability of multivariate

observations.

- Recall: S is a function of deviation vectors x∗(1), · · · ,x
∗
(p)

• It can be shown that |S| = (volume)
2

(n−1)p

where volume is the p-dimensional volume of the p-dimensional

“box” formed by x∗(1), · · · ,x
∗
(p)

• |S| is “generalized sample variance”
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• |S| larger as x∗(1), · · · ,x
∗
(p) are re-oriented to be nearly

perpendicular (without changing lengths)

• |S| larger when x∗(i) is increased in length (x(i) multiplied by

c > 1) without changing orientation

• |S| ∼= 0 when any x∗(i)
∼= 0 (i.e., small sii)

• |S| ∼= 0 when any x∗(i) lies nearly in (p− 1)-dim. hyper-plane

formed by other deviation vectors

x∗(i)
∼= a1x

∗
(1) + · · ·+ ai−1x

∗
(i−1) + ai+1x

∗
(i+1) + · · ·+ apx

∗
(p)

• |S| = 0 if one or more of observed variables is a linear function

(sum, difference, etc.) of one or more other observed variables

• |R| = (volume)
2

(n−1)p where volume is formed by standardized

deviation vectors
x∗(1)√
s11
, · · · , x∗p√

spp

• |R| = 1
(s11,s22,··· ,spp) |S|
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• |R| unaffected by multiplying x(i) by c 6= 0

• If s(ij) = 0 for all i 6= j, |R| = 1

• Alternative to |S| = “generalized sample variance” is tr{S} =

“total sample variance”

Recall that |S| =
p∏
i=1

λi

tr{S} =

p∑
i=1

λi

tr{S} incorporates no multivariate (correlation structure)

information
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E Multivariate Normal (MVN) Distribution

Why the emphasis on the MVN?

(1) Only 1st and 2nd moments needed to describe distribution

(2) Uncorrelated variables ⇒ independent variables

(3) Linear functions of MVN variables are normal

(4) Genuinely good population model for some natural phenomena

(5) Even for nonnormal data, MVN is often useful approximation

– especially for inferences involving sample mean vectors, which

are asymptotically normal due to CLT
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• The Gaussian (normal) density function

– Univariate Gaussian (normal) density:

fx(x) =
1√

2πσ2
e−(x−µ)

2/(2σ2)

=
1

(2π)
1
2 (σ2)

1
2

e−
1
2 (x−µ)

1
σ2 (x−µ)
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– Bivariate casex1
x2

 ∼ N2

µ1

µ2

 ,

 σ11 ρ12
√
σ11
√
σ22

ρ12
√
σ11
√
σ22 σ22



fx(x) =
1

2π
√
σ11σ22(1− ρ212)

× exp

{
−1

2(1− ρ212)

[(
x1 − µ1√

σ11

)2

+

(
x2 − µ2√

σ22

)2

−

2ρ12

(
x1 − µ1√

σ11

)(
x2 − µ2√

σ22

)]}

∗ For bivariate case, if ρ12 = 0, fx

x1
x2

 = fx1
(x1) · fx2

(x2)
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– p-variate normal density

fx(x) =
1

(2π)
p
2 |Σ| 12

e−
1
2 (x−µ)′Σ−1(x−µ)

∗ For p-variate case, if Σ is diagonal

Σ−1 =


1
σ11

0

. . .

0 1
σpp

 and |Σ| = (σ11)(σ22) · · · (σpp)

fx(x) =
1

(2π)
p
2

√
(σ11) · · · (σpp)

×exp

{
−1

2

(x1 − µ1)2

σ11
− · · · − 1

2

(xp − µp)2

σpp

}
= fx1(x1) · fx2(x2) · · · · · fxp(xp)
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• Shape of the MVN density

(Fig 4.2 from RC)

σ11 = σ22, ρ12 = 0 σ11 = σ22, ρ12 = .75
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(Fig 4.3 from RC)

σ11 = σ22 for both plots

– Which has small |Σ| and which has large |Σ|?
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• Contours of MVN Values of x yielding constant height for

density are ellipsoids.

Constant probability density contour

=
{

all x 3 (x− µ)′Σ−1(x− µ) = c2
}

(Constant density contour for bivariate normal. Fig 4.4 from RC)

– Pr
{

(x− µ)′Σ−1(x− µ) ≤ χ2
p(α)

}
= 1− α

where χ2
p(α) is the upper (100α)th %-ile
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Some Properties of the MVN Distribution

x
p×1
∼ Np(µ,Σ) and

x1

x2

 ∼ Np
µ1

µ2

 ,
Σ11 Σ12

Σ21 Σ22


1. Linear combinations of x are normal

For constant vector c
q×1

and matrix A
q×p

• Ax + c ∼ Nq(Aµ+ c,AΣA′)

• c′x ∼ N1(c′µ, c′Σc)

• E{Σ−
1
2 (x− µ)} = Σ−

1
2 (µ− µ) = 0p

var{Σ−
1
2 (x− µ)} = Σ−

1
2 ΣΣ−

1
2 = Ip

and Σ−
1
2 (x− µ) ∼ Np(0, I)

• (T′)−1(x− µ) ∼ Np(0, I) where T′T is the Cholesky

decomposition of Σ.
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2. All subsets of components of x are MVN

If x =

x1

x2

 ∼ Np
µ1

µ2

 ,
Σ11 Σ12

Σ21 Σ22

,

then x1 ∼ N(µ1,Σ11)

x2 ∼ N(µ2,Σ22)

xi ∼ N1(µi, σii), i = 1, . . . , p

QUESTION: Is the converse also true? I.e., if each

xi, i = 1, ..., p, is distributed normally, does that imply that

x
p×1

is MVN?

3. Zero covariance ⇔ independence

• x1 and x2 are independent if Σ12 = 0

• xi and xj are independent if σij = 0
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4. Conditional distributions are normal

x1|x2 ∼ N(µ1 + Σ12Σ
−1
22 (x2 − µ2),Σ11 −Σ12Σ

−1
22 Σ21)

• E{x1|x2} indicates linear relationship between subsets of x or

between xi and xj

– Use to check for nonnormality in bivariate (or p-variate) data
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5. Chi-square distribution

(x− µ)′Σ−1(x− µ) ∼ χ2
p

(x− µ)′Σ−1(x− µ) =
[
Σ−

1
2 (x− µ)

]′
︸ ︷︷ ︸

z′︸︷︷︸
∼Np(0,I)

[
Σ−

1
2 (x− µ)

]
︸ ︷︷ ︸

z︸︷︷︸
∼Np(0,I)

=

p∑
i=1

z2i (sum of p indep. squared normals)

= χ2
p

(we’ll use this property to check for MVN’ity)
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F Assessing MVN’ity & Detecting Outliers

• Though normality of univariate & bivariate subsets of x
p×1

does

not guarantee MVN’ity, in practice, 1-D and 2-D investigations

are often sufficient

1-D Tools

– Histograms

– Normal probability plots

y-axis: ordered observations x(1), . . . , x(n)

x-axis: Φ−1
(
i− 1

2

n

)
or Φ−1

(
i

n+1

)
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– Tests for skewness & kurtosis

– Kolmogorov-Smirnov, D’Agostino, and friends

2-D Tools

– 2-D Scatterplots (check for linearity)

– Check bivariate densities

∗ Image plots

∗ Perspective plots
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Multivariate Tools

– χ2 QQ-Plot

Since x ∼ Np(µ,Σ) implies (x− µ)′Σ−1(x− µ) ∼ χ2
p

Plot:

x-axis:
(
i− 1

2

n

)th
quantile of χ2

p

y-axis: D2
(i) = ith ordered value of D2

i where

D2
i = (xi − x̄)′S−1(xi − x̄)

∗ Alternatively, Gnanadesikan and Kettenring (1972) suggest

that the following plot is superior:

x-axis:
(
i− 1

2

n

)th
quantile of β(p2 ,

1
2 (n− p− 1))

y-axis: n
(n−1)2D

2
(i)

– “Grand Tour”

45



Univariate Transformations to Near-Normality

– Make data more “normal” by considering various

transformations

– Some standard transformations

∗ Counts (x) ⇒ use
√
x

∗ Proportions (p̂) ⇒ use logit(p̂) = 1
2 log

(
p̂

1−p̂

)
∗ Correlations (r) ⇒ use z(r) = 1

2 log
(

1+r
1−r

)
∗ Skewed (continuous) data (x) ⇒ use “power transformation”

(xλ) or “Box-Cox transformation”

x(λ) =

 xλ−1
λ for λ 6= 0

ln(x) for λ = 0
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· Box and Cox (1964) recommend using

x(λ) =

 xλ−1
λ for λ 6= 0

ln(x) for λ = 0

where λ is chosen by maximizing

`(λ) = −n
2

ln s2λ + (λ− 1)
n∑
i=1

ln(xi),

where

s2λ = 1/n

n∑
i=1

(x
(λ)
i − x(λ))

2

is the maximum likelihood estimate of the variance of x(λ)

and x(λ) is the sample mean of the n transformed

observations
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Multivariate Transformations to Near-Normality

• Maximize

`(λ) = −n
2

ln |Sλ|+
p∑
j=1

[
(λj − 1)

n∑
i=1

ln(xij)

]

where xij is the ith measurement on the jth variable, Sλ is the

maximum likelihood estimate of the covariance matrix for the

transformed data
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G Maximum Likelihood

Let x1, . . . ,xn be a r.s. from Np(µ,Σ)

Joint density:

f(x1, . . . ,xn) =
∏n
i=1 f(xi)

=

n∏
i=1

1

(2π)
p
2

|Σ| 12 exp

{
−1

2
(xi − µ)′Σ−1(xi − µ)

}

=
1

(2π)
np
2 |Σ|n2

exp

{
−1

2

n∑
i

(xi − µ)′Σ−1(xi − µ)

}
= L(µ,Σ)

Goal: Find values of µ and Σ that maximize the likelihood of

observing x1, . . . ,xn.
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Some preliminaries

• Result 4.10 (Proof on pages 170-171, JW) Given a p× p
symmetric positive definite (p.d.) matrix B and a scalar b > 0,

1

|Σ|b
e
−tr(Σ−1B)

2 ≤ 1

|B|b
(2b)pbe−bp

for all p.d. Σ, with equality holding only if Σ = 1
2bB.

• Rewrite exponent of L(µ,Σ):

(xi − µ)′Σ−1(xi − µ) = tr
{

(xi − µ)′Σ−1(xi − µ)
}

= tr
{
Σ−1(xi − µ)(xi − µ)′

}
and
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n∑
i=1

(xi − µ)′Σ−1(xi − µ) = tr

{
n∑
i=1

(xi − µ)′Σ−1(xi − µ)

}

= tr

{
Σ−1

n∑
i=1

(xi − µ)(xi − µ)′

}

= tr

{
Σ−1

n∑
i=1

[(xi − x̄) + (x̄− µ)] [(xi − x̄) + (x̄− µ)]′

}

= tr

{
Σ−1

[
n∑
i=1

(xi − x̄)(xi − x̄)′ +

n∑
i=1

(xi − x̄)(x̄− µ)′

+
n∑
i=1

(x̄− µ)(xi − x̄)′ +
n∑
i=1

(x̄− µ)(x̄− µ)′

]}

= tr

{
Σ−1

[
n∑
i=1

(xi − x̄)(xi − x̄)′ + n(x̄− µ)(x̄− µ)′

]}
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So,

L(µ,Σ) =
1

(2π)
np
2 |Σ|n2

×

exp

{
−1

2
tr

(
Σ−1

[
n∑
i=1

(xi − x̄)(xi − x̄)′ + n(x̄− µ)(x̄− µ)′

])}
Note that the value of µ maximizing L(µ,Σ) is the value

minimizing tr{nΣ−1(x̄− µ)(x̄− µ)′}.

tr
{
nΣ−1(x̄− µ)(x̄− µ)′

}
= n(x̄− µ)′Σ−1(x̄− µ)

≥ 0

since Σ−1 and Σ are p.d. with equality (minimization) when

x̄ = µ.

∴ MLE for µ is µ̂ = x̄
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L(µ̂,Σ) =
1

(2π)
np
2

1

|Σ|n2
exp

{
−1

2
tr

[
Σ−1

n∑
i=1

(xi − x̄)( q )′

]}

= k
1

|Σ|b
exp

{
−1

2
tr
[
Σ−1B

]}
(using Result 4.10, where b = n

2

and B =
∑n
i=1(xi − x̄)(xi − x̄)′)

≤ k
1

|B|b
(2b)pb exp{−bp}

with equality (maximization) when Σ = 1
2bB.

∴ MLE for Σ is Σ̂ =
1

2b
B

=
1

n
Σ(xi − x̄)(xi − x̄)′

= Sn
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Notes:

1. Invariance property: MLE of h(µ,Σ) is h(µ̂, Σ̂)

2. Let x1, . . . ,xn be a r.s. from Np(µ,Σ). Then x̄ and S are

sufficient statistics.
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H Sampling Distribution of x̄ and S

Recall for p = 1:

(n− 1)s2

σ2
∼ χ2

n−1

or

(n− 1)s2 ∼ σ2χ2
n−1

For p > 1:

(n− 1)S ∼Wp(n− 1,Σ)

x̄ ∼ Np(µ,
1

n
Σ)

and x̄ and S are independent
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Law of large numbers

x̄ converges in probability to µ

S converges is probability to Σ

CLT: Let x1, . . . ,xn be independent obs. from a population with

mean µ and variance Σ.

•
√
n(x̄− µ) is approx. Np(0,Σ)

• n(x̄− µ)′S−1(x̄− µ) is approx χ2
p for n− p large.
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I EM Algorithm & Missing Data

Frequently observed scenario:

Many observations contain information on only some of the

variables.

Approaches:

1. Analyze only the complete observations

• May lose substantial amount of data

– Suppose a mechanism causes m% of elements of X
n×p

to be

missing at random.

P 10 20 50 100

% of rows of x that are
complete when m%=1% 90% 82% 61% 37 %

complete rows when m%=5% 60% 36% 8% 0.6%
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2. Conduct analysis using

¨̄x = (¨̄x1, . . . , ¨̄xp)
′

and

S̈ =


s̈11 · · · s̈1p
...

. . .
...

s̈p1 · · · s̈pp


• ¨̄xi calculated using all subjects for which variable i is observable

• s̈ij calculated using all subjects for which variables i and j are

observable

• S̈ may not be nonnegative def!

3. Replace missing value xij with x̄j

• Resulting S is positive definite but each element suffers from

attenuation (“shrunk-towards-zero”) bias
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4. EM Algorithm

• Assumes “missing at random”

– Mechanism responsible for missingness not influenced by

value of the variables

Ex Movie preference data

xi
2000×1

= [rating1,
↑

“Cinema

Paradiso”

. . . , rating2000
↑

“The Pokémon

Movie”

]

x
n×2000

=


7 3 · · · NA

NA 5 · · · 10
...

...
...


Missing at random??
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Two steps of Algorithm:

1. Expectation (Prediction) Step

Given an estimate θ̃
(

e.g., θ̃ = (µ̃′, vech Σ̃)
)

, predict the

contribution of any missing observation to the (complete-data)

sufficient statistics using complete data & current θ̃.

Let xi
p×1

=

x
(1)
i

x
(2)
i

 ← missing components (q × 1)

← observed components ((p− q)× 1)

µ̃
p×1

=

µ̃(1)

µ̃(2)

 and Σ̃ =

Σ̃11 Σ̃12

Σ̃21 Σ̃22


Each “E” step estimates x

(1)
i using regression:

x̃
(1)
i
q×1

= µ̃
(1)
i
q×1

+ B
q×(p−q)

x
(2)
i − µ̃

(2)
i︸ ︷︷ ︸

(p−q)×1
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where regression coefficients

B = Σ̃12
q×(p−q)

Σ̃
−1
22

(p−q)×(p−q)

2. Maximization (Estimation) step

After obtaining new sufficient statistics (from prediction of

missing values in E step), obtain revised version of θ̃.

• Iterate “E” and “M” steps until convergence

• Each iteration has guaranteed increase in likelihood . . . at

very least, we get a local maximum.
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J Multiple Imputation

References: Rubin (1987), van Ginkel and Kroonenberg (2014)

Imputing with EM Algorithm

• Too optimistic — assumes that missing observations are

perfectly predictable using observed variables

• Need to account for the uncertainty in predicting missing

components (x
(1)
i ) from observed components (x

(2)
i )
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Multiple Imputation

• Suppose that after convergence with the EM algorithm, we

have estimates µ∗ and Σ∗

• For m = 1, . . . ,M different imputations, obtain a random

prediction of the complete data and denote it X[m]

– X[m] is obtained by predicting missing values in the ith row

as:

x
(1)
i,[m]
q×1

= µ
∗(1)
i
q×1

+ B∗
q×(p−q)

x
(2)
i − µ

∗(2)
i︸ ︷︷ ︸

(p−q)×1

+ e
(1)
i,[m]

where e
(1)
i,[m] is a draw from a Nq(0,Σ

∗
11 −Σ∗12Σ

∗−1
22 Σ∗21)
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∗ In R, if miss is a Boolean vector indicating the missing locations

in the row and Sig is Σ∗, the covariance matrix for the draw of

the Nq vector is:

Sig[miss,miss] - Sig[miss,!miss] %*%

solve(Sig[!miss,!miss]) %*% Sig[!miss,miss]

• Collect M random estimates of the complete data and denote

these X[m],m = 1, . . . ,M, and from each matrix, obtain the

parameter estimate of interest β̂m
k×1

.

– E.g., β̂m may be just the sample mean x̄m (and k = p)

– Note that you want M >> k
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• Our MI-based estimate of β is

β̂MI =
1

M

M∑
m=1

β̂m

• For inference, we use

v̂ar(β̂MI)
k×k

= V̄ + (1 +
1

M
)B

where

V̄
k×k

=
1

M

M∑
m=1

v̂ar(β̂m)

and

B
k×k

=
1

M − 1

M∑
m=1

(β̂m − βMI)(β̂m − βMI)
′
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– Note: if β = µ and β̂m = x̄m, then

µ̂MI =
1

M

M∑
m=1

x̄m

v̂ar(µ̂MI)
p×p

= V̄ + (1 +
1

M
)B

where

V̄
p×p

=
1

Mn

M∑
m=1

Sm

and

B
p×p

=
1

M − 1

M∑
m=1

(x̄m − µ̂MI)(x̄m − µ̂MI)
′

– Note: some have recommended as an improved estimate of

var(β̂MI) to use:

v̂ar(β̂MI) = V̄ + (1 +
1

M
)[tr(BV̄−1)/k]V̄
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– Warning: Hypothesis tests of H0 : µ = µ0 or H0 : µ1 = µ2 will

be anti-conservative if standard df formulae are used (especially

when the rate of missingness in the data is high). See Rubin

(1987) or van Ginkel and Kroonenberg (2014) for additional

details on df adjustments.
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