II. Foundations of Multivariate Analysis
A Some Matrix Algebra

Partitioned Matrices

- . Bi1 Bio
All A12 nxs nXxt
A __ | mXn mXr B _
(m4q) X (n+7) A21 A22 (n+7) X (s+t)
q><n q><7’ B21 B22
| XS rXt |

— Since all of the submatrices are conformable,

A;1Bi1 +A12Bay Aj1Bio +A12Ba

AB =
As1Bi1 +A2Bo; A91Bis + AxBoo

— If A;; and Aoy are square (m =n and g = r) and

A12 — /21 — U,
|A| = |Aq1] |Ags]
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— If A;; and Ay are both square and nonsingular,

analogous to

Al

aii

a1

ai2

a2

[Aqq]|Ags — A21A1_11A12|
[Ags| |A1r — A12A2_21A21|

= 011022 — a210G12

o a21012

= Q11 (a2 — —
aii

o a12G21

= Q22 \ Q11 — —
a2



Eigenvalues and Eigenvectors

A is an eigenvalue of the square matrix A and x is the
corresponding eigenvector if:

Ax = )\x

or

(A-X)x=0
o If |A — M| # 0, then (A — AI) has an inverse and
(A-X)"HA-ADx=(A-)X)"10

= X = 0 is the only solution

e So, set |A — AI,| = 0 and solve for A

~

“characteristic
equation”
e Eigenvalues Aq1,..., A, accompanied by eigenvectors Xy, ...



Orientation of eigenvectors is what’s important. Length is
arbitrary — kxi, ..., kx, equally good. (We usually choose

eigenvectors such that x'x = 1.)

Spectral decomposition of A

Let
C = matrix containing normalized eigenvectors of A
= |x1 X2 ... Xp]
and let i i
A O 0
0 Ao 0
D =
0 0 Ap

Note that C is orthogonal (so I = CC’' = C'C)



Also,

ACC’

Alx; x2 ... x,|C
[Ax; Axs ... Ax,|C’
(A1x1 Aoxo ... Apx,|Cf
CDC’

/

A1X1X] + AoXoXh + -+ + )\poXp

D = C'AC



Positive Definite & Nonnegative Definite Matrices

e A is symmetric
PXp

o If x’Ax > 0 for all x #£ 0, then A is “positive definite (p.d.)”

o If xX’Ax > 0 for all x # 0, then A is “nonnegative definite
(n.n.d.)”

o If x’Ax > 0 for all x # 0, with x’Ax = 0 for at least one
x # 0, then A is “positive semi-definite (p.s.d.)”

— In other words, if A is n.n.d., but not p.d., we say A is p.s.d.
Easy check for these properties:
1. Eigenvalues of a positive definite matrix are all positive.

2. Eigenvalues of a nonnegative definite matrix are positive or

zero (with rank(A) = number of positive eigenvalues).



Trace and Determinant of a Square Matrix A = (a;;)

PXp
— tI‘(A) = Z Qiq
i=1
— tr(AB) = tr(BA)
If A hase’vals A\j,..., A,
p
— tr(A) =) N
i=1
p
— |A] = H by (Practice: show these two statements are
1=1

true)



Square-root and Inverse matrices

The spectral decomposition of symmetric A :

pXp
A = CDC’
° A1/2 _ CD1/2C/
A2
\1/2
where DV/2 = ?
0




Note: AY/2A1/2 — cDY2C/'CcDY2C

— CDl/ZDl/ch
= CDC’
= A
e Al =CD I
- i}
'V 0
1
where D! = A2
1
0 v




Note: A™'A = CD!'C’'CDC’
= CD 'DC’
= CC’
=T
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A a
e Suppose A = e

/
Adjo  A22

Al =
b

_ / —1
where b = ago — 8.12A11 a9

e Suppose A =B + cc’
PXp

Al =B!

11

1 DA + Ajjaal, A

/ —1
—aj Ay

B lcc/B1
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Random Vectors and Matrices

e X = (x;;) is a random matrix (matrix of r.v.’s)

| E{en} B{ew} - B{zy}
e e
_E{xnl} E{zn2} - E{xnp}_

o If X and Y are random and A and B are constant:
E{X+Y} =F{X}+ E{Y}

E{AXB} = AE{X)B
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e If x is arandom vector
px1

E{x}

13
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Y = var{x} (« or “cov{x}”)

= E{(x — p)(x — p)'}
B ] )
011 012 -+ O1p Notes:

021 022 -+ O2p 1. Oi5 = 044
2. x; indep. of z;

= cov(x;,zj) =0

|Opl  Op2 Opp_ )
- . \
1 P12 “. ,Olp
p21 1 -+ po Note:
P = corr{x} = . . _p 0
: ) . : Pij = Pji
i ,Opl pp2 1 i )
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o Let

_ N
Xq X1 | gx1
T | (x| e @ogx1
Tp |
251
E{x} =
H2_ _
i >
i1 12
qxq gx(p—q)
var{x} = 5 5,
~— ~—
| (p—a)xq (p—q)x(p—q)




e Let B and C be constant matrices and let b be ¢
TXPp mxp rx1 mx1

constant vectors

E{Bx} =Bpu —rxl
var{Bx} = BXB' —rXxr
cov{Bx,Cx} = BXC' —rXxXm

E{b'x} =b'u < scalar
var{b'x} = b'Zb < scalar

cov{b’x,c'x} = b'Xc < scalar
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B Expected values for X and S

Let x;, 4 =1,...,n, be an i.i.d. random sample with F{x;} =
and var{x;} = 3.

B(x} = — (B{xi1} + B{xa} + -+ E{x})
1

= n (np)

= p
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var{x}

E{(x—p)(x—pn)'}
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E{Sn} = E{

n—1

20

n—1
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C Geometry of the Sample

Vectors
e Length of vector x = (x1, ..., Ty)
Ly =y\/2%+ -+ 22 =VX' X
e For some constant c,
L(cx) = ‘C‘ Lx

e Angle between vectors

Y2

1

N

i R € \5’) =9

21

" Npiy. 24 W




cos(8) = cos(fz — 6:)
= cos(62) cos(6;) + sin(6s) sin(6;)
- () () (2) (2)

x'y
Ll

SO
x'y =0 <= cos(f) = 0 <= 0 is 90° or 270°

Thus x'y = 0 means x and y are perpendicular.
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Projections

Projection (shadow) of y onto x

y'x
p— ; X
X'x

Length of projection of y onto x

y'x|
L, =22
Ly

— ‘cos((g)‘ - Ly since y’x = COS(Q)Lny

y'x|
L2

X

y'x
x'x

Ly =
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Projections of Sample Vectors

4 1
e Viewing X = | _: 3 | as n points in p-space,
nXxp 3 5
1
x = —-1X
px1 n
. — N/
= (:Ul,CE‘Q,...,ZIZp)
= the center of gravity

2

A

S5k e X3

4l

X, 3t @f
2+
1 [ B
i I | 1 | 1 | >1
-2 -1 1 2 3 4 5
-1k
-2
(Fig 3.1 from Jb\])
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e Alternatively, view X = [X(l), X(2), " ,X(p)] as p points in

nxp
n-space
| 3
A
6r ,
sp 2 ko
o/
3b l
)S(\\ !
ST
yl ], ‘2:
H

(Fig 3.2 from JW)

— Projection of x(;) onto unit-length vector %171 1S:

x! [ n
(4) (\/ﬁ ) 1 1 _
v v J=

25



(Fig 3.3 from JW)

— Note: Centered (mean-corrected) version of x;) (also called
“deviation vector”) is

szz-) = X(4) — T;1
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— Note:

Length of xzki) = xz‘g)x’&.)

Similarly, Sij = —— 1X(i)X>(kj)
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e Since, in general, y'z = Ly L, cos(), it follows that

/

X()X(j)

cos(0) =
X)X ()
(n —1)si;
\/(n — 1)812 \/('n, — 1>Sjj
Sz'j

. correlation " and j'* variables is cosine of angle between

X(;) and X,
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D Generalized Variance

Desire a single value which summarizes variability of multivariate

observations.
- Recall: S is a function of deviation vectors X’<"1)7 e ’X>(kp)
2
e It can be shown that |S| = (V?lume)
n—1)P

where volume is the p-dimensional volume of the p-dimensional

“box” formed by X>(k1)7 o ’szp)

e |S|is “generalized sample variance”

29



*

S| larger as x{,),- - , X[, are re-oriented to be nearly
perpendicular (without changing lengths)

S| larger when x7;, is increased in length (x(;) multiplied by
¢ > 1) without changing orientation

S| = 0 when any x7;) = 0 (i.e., small s;;)
S| = 0 when any x{;) lies nearly in (p — 1)-dim. hyper-plane
formed by other deviation vectors

X(p) = Xy oo F G Xy 01Xy o X

|S| = 0 if one or more of observed variables is a linear function
(sum, difference, etc.) of one or more other observed variables

2
R| = (VOhime) where volume is formed by standardized
(n—1)P Yy
. . m o }{>i<
deviation vectors NG \/_
_ 1
|R| o (31175227"' aspp> |S|
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e |R| unaffected by multiplying x(;) by ¢ # 0
o [f S(zy) — (0 for all ¢ #], |R’ =1

e Alternative to |S| = “generalized sample variance” is tr{S} =

“total sample variance”

p
Recall that |S| = H Y
i=1

tr{S} = i A

tr{S} incorporates no multivariate (correlation structure)

information
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E Multivariate Normal (MVN) Distribution

Why the emphasis on the MVN?

1) Only 1°¢ and 2" moments needed to describe distribution

2) Uncorrelated variables = independent variables

4

(1)

(2)

(3) Linear functions of MVN variables are normal

(4) Genuinely good population model for some natural phenomena
()

5) Ewven for nonnormal data, MVN 1is often useful approximation

— especially for inferences involving sample mean vectors, which
are asymptotically normal due to CLT
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e The Gaussian (normal) density function

— Univariate Gaussian (normal) density:

1 2 2

_ —(z—p)”/(207)
faoz) = 27‘(‘0‘26
1

— e

: : —3(z—p) =5 (z—p)
(2m)% (02)
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— Bivariate case

T N 1 o11 P124/0114/022
~ 1V2 )
T 2 P121/011/022 022
1
fx(x) =

21m\/011092(1 — pts)
2 2
% exp —1 (331—M1) n (56‘2—#2) B
2(1 - pis) Vo1 V022

e (222) (222)])
)

f:l:l CUl f:CQ(ZUQ)

x For bivariate case, if p1o = 0, fx
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— p-variate normal density

Felx) = —— e B )

(2m)2 |22

x For p-variate case, if X is diagonal

- .
X = and [3| = (011)(022) - - - (0pp)
0 1
1
) = (2m)2+/(o11) - (opp)
1 (z1 — p1)? 1 (2 — pup)°
exXp _5 011 B B 5 Opp }
= for(®1) * foo(22) fap (Tp)
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e Shape of the MVN density

(5

%
¢o

S

X

X
OB
X5

3
\
S

0
X
"

)

0

)

%

YO

)

X
"
"

(Fig 4.2 from RC)

1D

011 =— 022, P12

011 =— 022, P12
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10 — 10 —
SN(©) "
P P
-10 — -10 —
~20- | | | | | ~20- | | | |
-20  -10 0 10 20 20  -10 0 10
X X

(Fig 4.3 from RC)

011 — 099 for both plOtS
— Which has small |¥| and which has large |27

37
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e Contours of MVN Values of x yielding constant height for
density are ellipsoids.

Constant probability density contour
={all x> (x — p)'E 7 (x — p) = %}

(Constant density contour for bivariate normal. Fig 4.4 from RC)

~Pr{x—p)T 7 (x—p) <xi(@)} =1-a
where x2(a) is the upper (100c)th %-ile
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Some Properties of the MVN Distribution

X > >
x ~ Ny, ) and [ 1] ~nN, [ |H .

%1
p X2 Mo Do oo

1. Linear combinations of x are normal

For constant vector ¢ and matrix A
gx1 qXxXp

e Ax+c~ N,(Au+c,AXA’)
e c¢/x ~ Ni(c'u,c’'Xc)

and 72 (x — p) ~ N,(0,T)

e (T")"'(x—p)~ N,(0,I) where T'T is the Cholesky
decomposition of 3.
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2. All subsets of components of x are MVN
X > >

f % — Ll N, 251 | 11 12 |
X2 Mo o1 oo

then x; ~ N(pq,%11)
X2 ~ N(py, X22)
z; ~ Ni(pi,04), t=1,...,p

QUESTION: Is the converse also true? I.e., if each
x;, 1 =1,...,p, is distributed normally, does that imply that

x is MVN?

pXx1
3. Zero covariance < independence
e x; and x5 are independent if 35 =0

e z; and z; are independent if o;; = 0

40



4. Conditional distributions are normal
X1|X2 ~ N(py + 21222_21 (X2 — pg), X141 — 21222_21221)

e F{xi|x5} indicates linear relationship between subsets of x or

between z; and x;

— Use to check for nonnormality in bivariate (or p-variate) data

41



5. Chi-square distribution

~ ~Np(0,I)
~Np(0,1)
p
= Z z?  (sum of p indep. squared normals)

1

1

|
<
=[N

(we’ll use this property to check for MVN’ity)
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F Assessing MVN’ity & Detecting Outliers

e Though normality of univariate & bivariate subsets of X does
p X

not guarantee MVN'ity, in practice, 1-D and 2-D investigations
are often sufficient

1-D Tools

— Histograms

— Normal probability plots

y-axis: ordered observations x(iy,...,T )

i—1 _ i
X-aXI8S: @‘1(72) or ¢ 1(n+1)

H@WD Tou'lS Thin Tar'ls Kf;;h‘t s kewed
(t’b7 (U wi{o rm\) C?C23>
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— Tests for skewness & kurtosis

— Kolmogorov-Smirnov, D’Agostino, and friends
2-D Tools

— 2-D Scatterplots (check for linearity)

— Check bivariate densities
x Image plots

x Perspective plots
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Multivariate Tools

— x? QQ-Plot
Since x ~ N,(u, 2) implies (x — pu)'E " (x — p) ~ X
Plot:

th
x-axis: ( n2) quantile of x>

y-axis: D(2) = " ordered value of D? where

D2 — (Xi — }_()/S_l(XZ' — }_()

1

* Alternatively, Gnanadesikan and Kettenring (1972) suggest
that the following plot is superior:

. th
X-axis: (Z;L%) quantile of 3(2,2(n —p —1))
y-axis: 0 1)2 D%Z)

— “Grand Tour”
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Univariate Transformations to Near-Normality

— Make data more “normal” by considering various
transformations
— Some standard transformations
x* Counts () = use v/x
1

+ Proportions (p) = use logit(p) = 5 log <1§ﬁ)

+« Correlations (r) = use z(r) = 3 log (%)
* Skewed (continuous) data (z) = use “power transformation”

(z?) or “Box-Cox transformation”
% for A #£ 0
In(x) forA=0

)

Y4
S

| (
oxkreme Symmetry exbrome
r I‘j\'ﬂ«' |tk
s ke ness skewness
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- Box and Cox (1964) recommend using

>\_
) _ le for A £ 0

In(x) forA=0

ZC(

where A is chosen by maximizing

() = —g Ins3 + (A —1) Zln(azi),

where
$3=1/nY (afV — 2™y
=1

is the maximum likelihood estimate of the variance of z(
and (Y is the sample mean of the n transformed

observations
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Multivariate Transformations to Near-Normality

e Maximize

p
n
(A) = —5 ISy +j§::1

(A —1) Zln(ﬂfz’j)]

where x;; is the ¢th measurement on the jth variable, Sy is the
maximum likelihood estimate of the covariance matrix for the

transformed data
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Density
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G Maximum Likelihood

Let x1,...,x, be ar.s. from N,(u,3)

Joint density:
f(xa,..xn) =L f(xi)

Goal: Find values of g and X that maximize the likelihood of

observing xi,...,X,.



Some preliminaries

e Result 4.10 (Proof on pages 170-171, JW) Given a p X p
symmetric positive definite (p.d.) matrix B and a scalar b > 0,

1 —tr(22—1B) < 1
=P = BP

for all p.d. X, with equality holding only if 3 = QLbB.

e Rewrite exponent of L(u,X):

(xi = )27 (xi —p) = tr{(x; —p) B (x; —p)f
= tr {7 (x; —p)(x; — )’}

and
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—tr{ 2! Z;(xz —X)(x; — %) + Z(xz —%)(x—p)
+ ;(X —)(xi = %)+ ) _(x = p)(x—p) }
= tr {El ;(XZ —X)(x; = X) +nx—p)(x—pn) }
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1

L(p, %) =

1

(2m) % |25

exp {—Qtr (Zl

Note that the value of u maximizing L(u,X) is the value

n

Sk = %)y — %) + (% — (% — )

1=1

minimizing tr{nX (X — pu)(X — p)'}.

tr {nZ 7 (x — p)(x — p)'}

since 7! and ¥ are p.d. with equality (minimization) when

X = M.
.. MLE for p is

=X

53
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n(X —p)S" (X - p)
0

)



~ 1 1
L(/*l'a E) — np n CXP {tr

12

en)F [DF

1 1 ey
= |2‘b exp{—itr [Z B}}
(using Result 4.10, where b = 3
and B =3 1", (xi — X)(x; — X)')
k@(%) ? exp{—bp}

with equality (maximization) when ¥ = 2 B.

2b
MLEfOI‘ElSE—iB
2b
1
= —%(x; — X)(x; — X)’
- (x; — X)(x; — X)
—S,
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Notes:
1. Invariance property: MLE of h(p, ) is h(fi, 2)

2. Let x1,...,%, be ars. from N,(u,¥). Then X and S are
sufficient statistics.
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H Sampling Distribution of X and S

Recall for p = 1:

(n — 1)32 - Xz
o2 n—1
or
(n — 1)52 ~ 02X727,—1
For p > 1:

(n—1)S~W,(n—-1,%)

_ 1
X ~ Np(H, 52)

and X and S are independent
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Law of large numbers

X converges in probability to
S converges is probability to X

CLT: Let x1,...,x, be independent obs. from a population with

mean u and variance 3.

e /n(Xx — p) is approx. N,(0,%)

e n(X—p)S H(x — ) is approx X]% for n — p large.
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I EM Algorithm & Missing Data

Frequently observed scenario:
Many observations contain information on only some of the

variables.

Approaches:

1. Analyze only the complete observations

e May lose substantial amount of data

— Suppose a mechanism causes m% of elements of X to be
nxp

missing at random.

P 10 20 50 100
% of rows of x that are
complete when m%=1% 90% | 82% | 61% | 37 %

complete rows when m%=5% | 60% | 36% | 8% | 0.6%
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2. Conduct analysis using

s o =N/
X =(T1,...,%p)
and i i
S11 S1p
S =
Spl Spp

e I; calculated using all subjects for which variable ¢ is observable

e 5;; calculated using all subjects for which variables ¢ and j are
observable

e S may not be nonnegative def!
3. Replace missing value z;; with Z;

e Resulting S is positive definite but each element suffers from
attenuation (“shrunk-towards-zero”) bias
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4. EM Algorithm

e Assumes “missing at random”

— Mechanism responsible for missingness not influenced by

value of the variables

Ex

Movie preference data

x; = [ratingy,..., rating,qgo]
2000x 1 0 0
“Cinema “The Pokémon
Paradiso” Movie”
7T 3 --- NA
n X 2000

Missing at random??
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Two steps of Algorithm:

1. Expectation (Prediction) Step
Given an estimate 0 (e.g., 0 = (i, vech f])), predict the

contribution of any missing observation to the (complete-data)
sufficient statistics using complete data & current 6.

XZ(-l) 4 missing components (g X 1)
Let X; — (2)
px1 X, < observed components ((p —¢q) X 1)
) ~ _2 “ -
i = ;1,2 and 39 — ~11 ~12
px1 p? o1 a9

(1)

Each “E” step estimates x, "’ using regression:

MOPONINEN WO RS
gx1 gx1 qx(p_Q) N ~~ o

(p—q)x1
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where regression coeflicients
~ ~ —1
ax(p—a)(p—q) % (p—q)
2. Maximization (Estimation) step

After obtaining new sufficient statistics (from prediction of

missing values in E step), obtain revised version of 0.
e Iterate “E” and “M” steps until convergence

e Lach iteration has guaranteed increase in likelihood ... at

very least, we get a local maximum.
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J Multiple Imputation

References: Rubin (1987), van Ginkel and Kroonenberg (2014)

Imputing with EM Algorithm

e Too optimistic — assumes that missing observations are

perfectly predictable using observed variables

e Need to account for the uncertainty in predicting missing
(1) (2))
‘ i

.~’) from observed components (x

components (x
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Multiple Imputation

e Suppose that after convergence with the EM algorithm, we

have estimates u* and X*

e For m =1,..., M different imputations, obtain a random

prediction of the complete data and denote it X{,,

— X[y 18 obtained by predicting missing values in the ith row

as:
X = b+ B x® - el
<1 gx1  ax(p—q) | Y——— !
(p—q)x1
where ef;?l[)m] is a draw from a N, (0,27, — 21,35, '3%5))
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x In R, if miss is a Boolean vector indicating the missing locations

in the row and Sig is X™, the covariance matrix for the draw of
the N, vector 1is:

Sig[miss,miss] - Sigl[miss, 'miss] %x*Y%

solve(Sig[!miss, !miss]) %x*J Sigl[!miss,miss]

e (Collect M random estimates of the complete data and denote

these X, m =1,..., M, and from each matrix, obtain the
parameter estimate of interest Bm :
kx1

— E.g., 3,, may be just the sample mean X,,, (and k = p)
— Note that you want M >> k
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e Our MI-based estimate of 3 is
M
/8]\/[[ — M Tnzzjl /Bm

e For inference, we use

2 _ 1
var(Bpr) =V + (1 + M>B
kxk
where
_ 1 M
kYk M mz::lvar(ﬁm)
and
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— Note: if 3 = p and Bm = X,,, then

| M
IAJJMI - M }_(m
m=1
. _ 1
var(fty;) =V +(1+ —)B
PXp M
where
| M
V=—"12>S"g,
and
| M
. s o~ s o~ /
p]gp— M_lmzzjl(xm Poarr)(Xm — Bagr)

— Note: some have recommended as an improved estimate of
var(3,,;) to use:

@(Brg) =V + (L )l (BYV ) /KV
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— Warning: Hypothesis tests of Hy : u = pg or Hy : pu; = po will
be anti-conservative if standard df formulae are used (especially
when the rate of missingness in the data is high). See Rubin

(1987) or van Ginkel and Kroonenberg (2014) for additional
details on df adjustments.
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