
III. Multivariate Statistical Inference

Why use a multivariate approach when conducting tests on p variables?

1. Type I error protection

EX p = 10 univariate tests at α = .05

If variables are independent,

Pr{at least one rejection}
= 1− Pr{all 10 tests “accept”}
= 1− (.95)10 ∼= .40

In practice, the overall (“experimentwise”) Type I

error rate will fall in what range??

2. Power

Multivariate test is more powerful in many cases.

EX All p univariate tests fail to reject, but

multivariate test is significant due to combination of

small effects on some variables.

3. Understanding variables acting in combination.
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A.i. Hotelling’s T 2

First consider univariate test of H0 : µ = µ0 vs. H1 : µ ̸= µ0 when σ is

known. (Consider only two-sided tests, since one-sided don’t readily

generalize for p > 1)

Test statistic using r.s. (x1, . . . , xn):

z =
x̄− µ0

σ/
√
n
∼ N(0, 1) under H0

or

z2 = square of standardized distance

= n

(
x̄− µ0

σ

)2

∼ χ2
1 under H0
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Multivariate generalization (Σ is known):

H0 : µ = µ0 =


µ01

µ02

...

µ0p

 vs. H1 : µ ̸= µ0︸ ︷︷ ︸
At least one µi

is not equal to µ0i

Test statistic using r.s. ( x1
p×1

, . . . ,xn):

z2 = n(x̄− µ0)
′Σ−1(x̄− µ0) ∼ χ2

p under H0
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More frequently in practice, Σ is unknown.

• Univariate test statistic using r.s. (x1, . . . , xn):

t2 = n

(
x̄− µ0

s

)2

∼ t2n−1 under H0

=
√
n(x̄− µ0)(s

2)−1(x̄− µ0)
√
n

=
[
N1

(
0, σ2

)] [ scaled χ2

df

]−1 [
N1

(
0, σ2

)]
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• Multivariate generalization (Hotelling’s T 2):

T 2 = n(x̄− µ0)
′ S−1

↑
unbiased
estimate
of Σ

(x̄− µ0) ∼ T 2
p,n−1 under H0

= (x̄− µ0)
′

↑ ↗
x̄ and S
are indep.

since they

are based
on a r.s.

from MVN

(
S

n

)−1
︸ ︷︷ ︸
inverse
sample
cov.

matrix
for x̄

(x̄− µ0) ← “characteristic form”

=
√
n(x̄− µ0)

′︸ ︷︷ ︸
Np(0,Σ)

random vector

[∑n
i=1(xi − x̄)(xi − x̄)′

n− 1

]−1
︸ ︷︷ ︸

Wp(n− 1,Σ)

random matrix
divided by d.f.

√
n(x̄− µ0)︸ ︷︷ ︸
Np(0,Σ)

random vector
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Important properties of T 2

1. Sometimes we refer to the subscripts for T 2
p,ν distribution as

“dimension” and “df” (e.g., T 2
dim,df)

2. Must have n > p

• Otherwise S is singular and T 2 cannot be computed.

3. Degrees of freedom ν for T 2 is same as for analogous univariate

t-test:

• ν = n− 1 for one-sample test

• ν = n1 + n2 − 2 for two-sample test

4. Alternative hypothesis is 2-sided (no such thing as “H1 : µ > µ0”)

• Critical region is one-tailed (reject for large values) since test

statistic is squared distance
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5. ν−p+1
νp T 2

p,v

q
≡ Fp,ν−p+1

[Note: “
q
≡” is shorthand for the equivalence of the quantiles of two dist’ns]

• So, p-value for T 2 test is

p-value = Pr

{
Fp,ν−p+1 >

ν − p+ 1

νp
T 2

}
• Critical value for T 2 test is

T 2
α,p,ν =

νp

ν − p+ 1
Fα,p,ν−p+1

(
or

(n− 1)p

n− p
Fα,p,n−p when ν = n− 1

)
6. T 2 invariant under transformations of the form ẍ

p×1
= C

p×p
x

p×1
+ d,

where C is nonsingular
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7. T 2 is the likelihood ratio test (LRT) of H0 : µ = µ0

• Under H0 the likelihood is

L(µ0,Σ) =
1

(2π)np/2|Σ|n/2
exp

{
−1

2

n∑
i=1

(xi − µ0)
′Σ−1(xi − µ0)

}

=
1

(2π)np/2|Σ|n/2
exp

{
−1

2
tr

[
Σ−1(

n∑
i=1

(xi − µ0)(xi − µ0)
′)

]}
Using Result 4.10 (again), we obtain

max
Σ L(µ0,Σ) =

1

(2π)
np
2 |Σ̂0|

n
2

exp

{
−np
2

}
where Σ̂0 = 1

n

∑n
i=1(xi − µ0)(xi − µ0)

′
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• Recall
max
µ,ΣL(µ,Σ) =

1

(2π)
np
2 |Σ̂|n2

exp

{
−np
2

}
where Σ̂ = 1

n

∑n
i=1(xi − x̄)(xi − x̄)′

• Likelihood Ratio:

λ =
max
Σ L(µ0,Σ)
max
(µ,Σ)L(µ,Σ)

=

(
|Σ̂|
|Σ̂0|

)n
2

< cα

Λ = λ
2
n =

|Σ̂|
|Σ̂0|

=
1

1 + 1
n−1T

2

“Wilks’ Lambda” is rejected for small Λ or large T 2

* T 2 = (n− 1) |Σ̂0|
|Σ̂| − (n− 1)

* −2 lnλ ∼ χ2
ν−ν0

where ν = # of unrestricted parameters

and ν0 = # of parameters under H0

ex Turnips
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A.ii. Confidence Regions

• Confidence region R(X):

Set of possible values of θ in Θ based on X

• R(X) is 100(1− α)% C.R. if, before the sample is selected

Pr{R(X) will cover the true θ} = 1− α.

• C.R. for µ [100(1− α)%]

{all µ ∋ n(x̄− µ)′S−1(x̄− µ)︸ ︷︷ ︸
squared mult. distance from x̄

≤ T 2
α,p,ν}

or {all µ ∋ n(x̄− µ)′S−1(x̄− µ) ≤ νp
ν−p+1Fα,p,ν−p+1}
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• Axes of the ellipsoid (based on eigenvalues λ1, . . . , λp and

eigenvectors e1, . . . , ep of S):

±
√
λi√
n

√
T 2
α,p,ν along ei

Elongation of ellipsoid:
√
λ1√
λ2
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Interest in C.I.’s for individual components of x or linear combination

a′x.

• Define z = a′x

z ∼ N1(a
′µ,a′Σa) = N1(µz, σ

2
z)

• Sample statistics:

z̄ = a′x̄

s2z = a′Sa

Note: a1 = [0, 1, 0, . . . , 0] will yield a′1x̄ = x̄2 and

a2 = [1,−1, 0, . . . , 0] implies that a′2x̄ = x̄1 − x̄2, etc.

• 100(1− α)% C.I. for µz is

a′x̄± tα
2 ,n−1

√
a′Sa

n
“t-interval”
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– Experimentwise Type I error rate (EER)

Pr {at least one C.I. “wrong”}

= 1− Pr{no C.I.’s are wrong}

= 1− (1− α)p assuming independence of C.I.’s

ex α = .05: EER for p = 10 is 1− (.95)10 ∼= .40

• Rewrite t-interval as

{
all a′µ ∋ n

(a′(x̄− µ))2

a′Sa
≤ t2n−1

}
Is there a bound c2 which can replace t2n−1 and defines a C.R. that

simultaneously contains a′µ for all a??
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• Preliminary result (2–50, JW)

For B
p×p

p.d. and x ̸= 0

max
x ̸=0

(x′d)2

x′Bx
= d′B−1d

with maximum attained when x = cB−1d, c ̸= 0

• So, max
a̸=0

(a′(x̄−µ))
a′Sa = n (x̄− µ)

′
S−1 (x̄− µ) = T 2

with maximum at

a = c S−1 (x̄− µ) , c ̸= 0

= “discriminant function”
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=⇒ Simultaneously for all a, the interval

a′x̄±
√

T 2
α,p,ν

√
a′Sa

n
or

a′x̄±

√
νp

ν − p+ 1
Fα,p,ν−p+1

a′Sa

n

↖
← “T 2 interval”

↙

or when ν = n− 1

a′x̄±

√
(n− 1)p

n(n− p)
Fα,p,n−pa′Sa

will contain a′µ with probability 1− α.

⃝̈⌢ More conservative (wider) than t-interval

⃝̈⌣ Preserve EER≤ α

⃝̈⌣ Allows “data-snooping”
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If we’re willing to specify a few linear combinations a1, . . . ,ak before

collecting the data, we might consider using intervals based on the

Bonferroni inequality which are narrower than T 2 intervals but still

protect EER for a finite set of l.c.’s.

Given C.I.’s for k l.c.’s a′1µ, . . . ,a
′
kµ,

• Ei: event that i
th interval contains a′iµ

• P{Ec
i } = αi

Pr{all Ei} = 1− Pr{at least one Ec
i }

= 1− Pr{Ec
1 ∪ Ec

2 ∪ · · · ∪ Ec
k}

≥ 1−
k∑

i=1

Pr{Ec
i }

= 1− Σαi
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• Usually, specify αi =
α
k

So,

a′x̄± t α
2k ,n−1

√
a′Sa

n
“Bonferroni Interval”
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Critical values for 95% C.I.’s for µ1, . . . , µp
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Notes:

• Often useful to examine the discriminant function a = S−1(x̄− µ)

in

max
a̸=0

n(a′(x̄− µ))2

a′Sa
= T 2

• a indicates the relative contribution of the x’s to the separation of

the data from µ0

– Comparisons of a1, . . . , ap only informative when x’s are

commensurate (i.e., measured on the same scale with

comparable variances)
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– If x’s are not commensurate, consider coefficients a∗1, . . . , a
∗
p that

are applicable to standard variables.

– Discriminant function in terms of standardized variables

z = a∗1
x1 − x̄1

s1
+ · · ·+ a∗p

xp − x̄p

sp

instead of

z = a1x1 + · · ·+ apxp

OR

a∗ = D
1
2 a where D =


s11 0

. . .

0 spp


ex Turnips
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III.B. Comparison of Several Mean Vectors

III.B.i. Paired Observations

Let x1i and x2i be 2 p-variate responses for observation i (i = 1, . . . , n)

ex LaVerl’s SAT pre-class test grades and post-class grades

Pre-class grades:

x1i = (Quant = 640,Analyt = 610,Verbal = 490)

Post-class grades:

x2i = (Quant = 680,Analyt = 620,Verbal = 560)
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1. Calculate di = x1i − x2i

2. Calculate

d̄ =
1

n

n∑
i=1

di

and

Sd =
1

n− 1

n∑
i=1

(di − d̄)(di − d̄)′

3. T 2 = nd̄′S−1d d̄ ∼ T 2
p,n− 1︸︷︷︸

ν

q
≡ (n−1)p

n−p Fp, n− p︸︷︷︸
ν−p+1

[Note: “
q
≡” is shorthand for the equivalence of the quantiles of two dist’ns]

⋆ Same follow-up analyses as in one-sample T 2 test/intervals apply here

• Confidence regions/intervals

• Discriminant functions
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Alternatively, think of each observation

xi
2p×1

=

x1i

x2i

 ← pre-tests

← post-tests

x̄
2p×1

=

x̄1

x̄2


S

2p×2p
=

S11 S12

S21 S22


Interest is in Cxi, where

C
p×2p

=


1 0

1

. . .

0 1

−1 0

−1
. . .

0 −1
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Note

di = Cxi

d̄ = Cx̄

Sd = CSC′

and T 2 = nx̄′C′(CSC′)−1Cx̄ ∼ T 2
p,n−1

q
≡ (n− 1)p

(n− 1− p+ 1)
Fp,n−1−p+1

q
≡ (n− 1)p

n− p
Fp,n−p
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An extension to a comparison of p treatments given to each subject

over time

xi =


xi1

xi2

...

xip


← evaluation after day 1 dosage

← evaluation after day 2 dosage

← evaluation after day p dosage

i = 1, . . . , n

Interest may lie in comparisons of treatment means

C
(p−1)×p

µ =


−1 1 0 · · · 0 0

0 −1 1 · · · 0 0
...

...
...

...
...

0 0 0 −1 1




µ1

µ2

...

µp

 =


µ2 − µ1

µ3 − µ2

...

µp − µp−1
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T 2 = n(Cx̄)′(CSC′)−1Cx̄ ∼ T 2
p−1,n−1

q
≡ (n− 1)(p− 1)

(n− 1− (p− 1) + 1)
F(p−1),n−1−(p−1)+1

q
≡ (n− 1)(p− 1)

n− p+ 1
Fp−1,n−p+1

e.g., if comparing 3 days, we might use

C
2×3

=

−1 0 1

1 −2 1

←
←

linear increase/decrease in response

quadratic effect on response

e.g., if comparing 4 days, we might use

C
3×4

=


−3 −1 1 3

1 −1 −1 1

1 −3 3 −1


←
←
←

linear

quadradic

cubic
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B.ii. Two-Sample Comparisons

Interest in µ1 − µ2 (difference in two population means).

Assumptions:

• x11,x12, . . . ,x1n1
is a r.s. from Np(µ1,Σ)

• x21,x22, . . . ,x2n2 is a r.s. from Np(µ2,Σ)

– Note that Σ1 = Σ2 = Σ

• The two samples are independent

In practice, we can relax these assumptions somewhat for large n.

Let x̄i =
1

ni

ni∑
j=1

xij , i = 1, 2

Si =
1

ni − 1

ni∑
j=1

(xij − x̄i)(xij − x̄i)
′, i = 1, 2
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Since (n1 − 1)S1 ∼Wp(n1 − 1,Σ)

and (n2 − 1)S2 ∼Wp(n2 − 1,Σ)

(n1 − 1)S1 + (n2 − 1)S2︸ ︷︷ ︸
=(n1+n2−2)Spℓ

∼Wp(n1 + n2 − 2,Σ)

=⇒ E{Spℓ} = Σ

Since the two samples are independent

(x̄1 − x̄2) ∼ Np

(
µ1 − µ2,

1

n1
Σ+

1

n2
Σ

)
and

T 2 = [x̄1 − x̄2 − (µ1 − µ2)]
′
[(

1

n1
+

1

n2

)
Spℓ

]−1
[x̄1 − x̄2 − (µ1 − µ2)]

∼ T 2
p,ν = T 2

p,n1+n2−2

q
≡ (n1 + n2 − 2)p

(n1 + n2 − 2)− p+ 1
Fp,(n1+n2−2)−p+1
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100(1− α)% C.R. for µ1 − µ2 = δ:

{
all δ ∋ T 2 ≤ T 2

α,p,ν

}
ν = n1 + n2 − 2

where T 2 is the squared mult. distance between x̄1 and x̄2

or {
all δ ∋ T 2 ≤ (n1 + n2 − 2)p

(n1 + n2 − 2)− p+ 1
Fα,p,(n1+n2−2)−p+1

}
Follow-up analyses

• “t-interval”:

a′x̄1 − a′x̄2 ± tα
2 ,n1+n2−2

√(
1

n1
+

1

n2

)
a′Spℓa
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• “Bonferroni interval”:

a′x̄1 − a′x̄2 ± t α
2k ,n1+n2−2

√(
1

n1
+

1

n2

)
a′Spℓa

– k is # of contrasts of interest

ex want intervals for each of p variables

Then, [a1, . . . ,ap] = Ip and k = p

• “T 2-interval”

a′x̄1 − a′x̄2 ±
√
T 2
α,p,ν

√(
1

n1
+

1

n2

)
a′Spℓa

where T 2
α,p,ν ≡

(n1+n2−2)p
(n1+n2−2)−p+1Fα,p,(n1+n2−2)−p+1

• Examine discriminant function

a = S−1pℓ (x̄1 − x̄2)

for indication of contribution of the variables to separation of the

groups
31



→ If x’s are not commensurate consider standardized coefficients

a⋆ = D
1
2

pℓa

where

Dpℓ = diag{Spℓ} =


s11,pℓ 0

. . .

0 spp,pℓ


ex Duchenne muscular dystrophy

– Test H0 : µ1 = µ2 using x3, x4, x5,&x6

∗ Individual tests using tα/2, tα/2p,
√

T 2
α,p,ν as critical values

∗ Examine discriminant function coeff.

· Standardized coefficients
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Testing µ1 = µ2 when Σ1 ̸= Σ2

Univariate case (“Behrens-Fisher Problem”):

t∗ =
x̄1 − x̄2√
s21
n1

+
s22
n2

approx∼ tν

where

ν =

(
s21
n1

+
s22
n2

)2
(

s21
n1

)2

n1+1 +

(
s22
n2

)2

n2+1

 ← (Welch, 1937, 1947)

• Hsu (1938) and Scheffe’ (1959) argue that significance level for

usual t-test is preserved when n1 = n2
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Multivariate case:

T ∗
2

= (x̄1 − x̄2)
′
[
S1

n1
+

S2

n2

]−1
(x̄1 − x̄2)→ χ2

p

as (n1 − p)→∞, (n2 − p)→∞

• Significance level preserved for usual T 2 test when n1 = n2 and n1

and n2 are “very large” (Ito and Schull, 1964)

• “If sample sizes are equal the significance level [of usual T 2 test] is

not affected” (Carter, Khatri, and Srivastava, 1979)

? But do these properties hold with small to moderate sample sizes ?
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Simulation Study in Christensen & Rencher (1997)

For matrices of form Σ2 = kΣ1, equality of sample sizes (n1 = n2) is

less able to protect Type I error rate as p increases

• (Study considered small to moderate n1, n2 ∈ (2p, 10p))
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For multivariate Behrens-Fisher problem, consider

T ∗
2

= (x̄1 − x̄2)
′S−1e (x̄1 − x̄2)

as a statistic, where

Se =
S1

n1
+

S2

n2
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• There are several tests for µ1 = µ2 when Σ1 ̸= Σ2, and many of

these use

T ∗
2 approx∼ T 2

p,ν∗

For example:

– Yao (1965) test uses

1

ν∗
=

1

(T ∗2)2

2∑
i=1

1

ni − 1

[
(x̄1 − x̄2)

′S−1e

Si

ni
S−1e (x̄1 − x̄2)

]2
∗ Note: this is a multivariate extension of Welch’s approach to

univariate problem

– Nel and Van der Merwe (1986) test uses

ν∗ =
tr
{
S2
e

}
+ (tr{Se})2

2∑
i=1

1

ni − 1

[
tr

{(
Si

ni

)2
}

+

(
tr

{
Si

ni

})2
]
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• Simulation study: Nel and Van der Merwe (1986) and Kim (1992)

have highest power among tests with uninflated Type I error rate

ex Muscular Dystrophy
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Tests for additional information

Let x1i =

y1i

z1i

← p× 1

← q × 1
, i = 1, . . . , n1 be a r.s. from Np+q(µ1,Σ)

and x2i =

y2i

z2i

← p× 1

← q × 1
, i = 1, . . . , n2 be a r.s. from Np+q(µ2,Σ)

• Start with y measurements

– Will the q × 1 subvector z measured in addition to y

significantly increase the separation of the two samples

(or is z redundant in presence of y?)

• Sample means: x̄1 =

ȳ1

z̄1

 and x̄2 =

ȳ2

z̄2


Common sample covariance matrix: Spℓ =

Syy Syz

Szy Szz
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• If y and z are independent:

T 2
p+q = T 2

p + T 2
q

• If not independent: Compare T 2
p+q with T 2

p

T 2
p+q =

n1n2

n1 + n2
(x̄1 − x̄2)

′
S−1pℓ (x̄1 − x̄2)

T 2
p =

n1n2

n1 + n2
(ȳ1 − ȳ2)

′
S−1yy (ȳ1 − ȳ2)

Then, we can show that

T 2
add = (ν − p)

T 2
p+q − T 2

p

ν + T 2
p

∼ T 2
q,ν−p

q
≡ (ν − p)q

ν − p− q + 1
Fq,ν−p−q+1

or
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Fadd =

(
ν − p− q + 1

q

)
T 2
p+q − T 2

p

ν + T 2
p

∼ Fq,ν−p−q+1

where ν = n1 + n2 − 2

• If just checking the addition of one variable:

T 2
add ∼ F1,ν−p

ex Duchenne muscular dystrophy

– x3 and x4 are relatively inexpensive to measure compared to x5 and

x6. Are x5 and x6 important above and beyond x3 and x4

– x3, x4, x5, x6 may depend on age and season. Are x1 = age and

x2 = season important?
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B.iii. MANOVA (one-way)

• Comparing means from g groups

Sample from population 1: x11,x12, . . . ,x1n1

Sample from population 2: x21,x22, . . . ,x2n2

...

Sample from population g: xg1,xg2, . . . ,xgng


independent
random
samples

xℓj ∼ N(µℓ,Σ) ← Σ is the common covariance matrix
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• Instead of testing

H0 : µ1 = µ2 = · · · = µg vs. H1: at least two µ’s are unequal

we usually reparameterize

µℓ = µ+ τ ℓ ← treatment effect

Thus xℓj ∼ N(µ+ τ ℓ,Σ) and

H0 : τ 1 = τ 2 = · · · = τ g

• Our model:

xℓj = µ+ τ ℓ + eℓj , ℓ = 1, . . . , g, j = 1, . . . , nℓ

– For uniqueness (identifiability), we impose the constraint

g∑
ℓ=1

nℓτ ℓ = 0
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• Decomposition of sample:

xℓj
↑

observed

= x̄
↑

overall
sample
mean
µ̂

+ (x̄ℓ − x̄)
↑

estimated
treatment

effect
τ̂ ℓ

+ (xℓj − x̄ℓ)
↑

residual
êℓj
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• Multivariate analog of total (corrected) sum of squares is

g∑
ℓ=1

nℓ∑
j=1

(xℓj − x̄)(q)′︸ ︷︷ ︸
total corrected
sum of squares

and cross
products matrix

=

g∑
ℓ=1

nℓ(x̄ℓ − x̄)(q)′︸ ︷︷ ︸
= H

“Between”
groups

matrix

+

g∑
ℓ=1

nℓ∑
j=1

(xℓj − x̄ℓ)(q)′︸ ︷︷ ︸
= E

“Within” groups

matrix
=

∑g
ℓ=1(nℓ − 1)Sℓ

Notes:

– Assuming no linear dependencies, rank{H} = min(p, νH)

– Sℓ is the covariance matrix for the ℓth sample. So,

E

{
1

(
∑g

ℓ=1 nℓ)− g
E

}
= Σ

where rank{E} = min(p, νE)
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MANOVA TABLE (one-way)

Source SS Matrix d.f.

Treatment H νH = g − 1

Error E νE = (
∑g

ℓ=1 nℓ)− g

Total (corrected) H+E (
∑g

ℓ=1 nℓ)− 1

Wilks’ Λ

The likelihood ratio test of H0 : µ1 = µ2 = · · · = µg rejects H0 when

Λ =
|E|

|E+H|
≤ Λα,p,νH ,νE

• Note: Reject for small values of Λ. As in univariate anova F -test,

we “accept” when total SS (E+H) is dominated by error (E).

• Note: We sometimes refer to the subscripts of the Λp,νH ,νE

distribution as “dimension,” “numerator df,” and “denominator

df” (e.g., Λdim,dfnum,dfden
)

46



Properties of Wilk’s Λ:

1. For statistic to be obtained, we need νE ≥ p.

2. Degrees of freedom νH and νE are the same as in analogous

univariate case; e.g., one-way model: νH = g − 1 and

νE =
∑g

ℓ=1 nℓ − g

3. Let λ1, . . . , λs be the s non-zero eigenvalues of E−1H, where

s = min(p, νH). Then Λ =
∏s

i=1
1

1+λi
.

4. Critical value Λα,p,νH ,νE
decreases as p increases. Thus, adding

variables decreases power unless variables contribute to separation.
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5. When νH = 1 or νH = 2 or p = 1 or p = 2, Λ can be transformed to

follow an F distribution.

• If νH = 1

νE − p+ 1

p

1− Λ

Λ
∼ Fp,νE−p+1

• If νH = 2

νE − p+ 1

p

1−
√
Λ√

Λ
∼ F2p,2(νE−p+1)

• If p = 1

νE
νH

1− Λ

Λ
∼ FνH ,νE

• If p = 2

(νE − 1)

νH

1−
√
Λ√

Λ
∼ F2νH ,2(νE−1)
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6. Approximate tests

• For p > 2 or νH > 2 and n large

χ2 = −
[
νE −

1

2
(p− νH + 1)

]
ln Λ

approx∼ χ2
p νH

Approximately valid when p2 + ν2H ≤ 1
3

[
νE − 1

2 (p− νH + 1)
]

• More correct approximate distribution for Λ (exact when νH or p is

1 or 2):

F =
1− Λ1/t

Λ1/t

df2
df1

approx∼ Fdf1,df2

df1 = pνH

df2 = wt− 1
2 (pνH − 2)

w = νE + νH − 1
2 (p+ νH + 1)

t =


√

p2ν2
H−4

p2+ν2
H−5

for p2 + ν2H − 5 > 0 (or p+ νH > 3)

1 for p2 + ν2H − 5 ≤ 0 (or p+ νH ≤ 3)
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Other MANOVA Tests

Let (λ1, . . . , λs) be the ordered eigenvalues of E−1H, where

s = min(p, νH) = rank of H

• Roy’s Largest Root:

θ = λ1

– Note: SAS and most authors denote Roy’s Largest Root as λ1

(the largest root of E−1H). RC defines Roy’s Largest Root as

ξ1 = λ1

1+λ1
, which is the largest root of (E+H)−1H.
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– Approximate F -statistic (used by SAS):

Fθ =
(νE − d+ νH)

d
λ1

is an upper bound for “true F” which is distributed

Fd, νE − d+ νH

where (d = max (p, νH))

∗ Thus, Fθ-test is anti-conservative (yields lower bound on p-value)

– The eigenvector a1 corresponding to λ1 comprises the

discriminant function coefficients.

– For programs unable to obtain eigenvalues of nonsymmetric

matrices, we can use the fact that λ1 is a solution to both

(E−1H− λI)a = 0

and

(E−
1
2HE−

1
2︸ ︷︷ ︸

“symmetric”

−λI) E
1
2 a︸︷︷︸

“e’vector of

E− 1
2 HE− 1

2 ”

= 0
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• Pillai’s Trace:

V =

s∑
i=1

λi

1 + λi

= tr
{
(E+H)

−1
H
}
=

s∑
i=1

ξi

where ξ1, . . . , ξs are the s ordered e’vals of (E+H)
−1

H

– Note 1:

E−1H is analagous to between SS
within SS

(E+H)−1H is analagous to between SS
total SS

 “Large Ratio”
=⇒

Reject H0

– Note 2:

ξi =
λi

1 + λi
and λi =

ξi
1− ξi
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Approximate F -statistic (used in SAS):

FV =
(2N + s+ 1)

(2m+ s+ 1)

(
V

s− V

)
∼ Fs(2m+s+1),s(2N+s+1)

where

s = min(νH , p)

m = 1
2 (|νH − p| − 1)

N = 1
2 (νE − p− 1)
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• Lawley-Hotelling Trace

U =
s∑

i=1

λi

= tr{E−1H}

Approximate F -statistic (used in SAS):

Fu =
2(sN + 1)

s2(2m+ s+ 1)
U ∼ Fs(2m+s+1),2(sN+1)

→ Also known as “Hotelling’s generalized T 2”
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Why four test statistics?

• All 4 are exact tests (i.e., have size α), but when H0 not true they

have different power

• For p = 1, µ1, . . . , µk can be ordered along 1 dimension (line) and

F -test is U.M.P.

• For p > 1,µ1, . . . ,µk are points in s = min(p, νH) dimensions. But

means may in fact occupy only a subspace of the s dimensions; e.g.,

they may lie close to a line (1-D) or a plane (2-D).
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ex Visual memory task

x1 = % correct on positive stimulus questions

x2 = % correct on negative stimulus questions

g = 3 (One healthy group and two impaired groups)
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ex Egyptian skulls

x1 = maximum breadth of skull (mm)

x2 = basibregmatic height of skull (mm)

x3 = basialveolar length of skull (mm)

x4 = nasal height of skull (mm)

g = 3 (4000 B.C., 3300 B.C., 1850 B.C.)

ex Rootstock

x1 = trunk girth at 4 years (mm × 100)

x2 = extension growth at 4 years (m)

x3 = trunk girth at 15 years (mm × 100)

x4 = weight of tree above ground at 15 years (lb × 1000)

g = 6
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Follow-up analyses

Although only multivariate tests could detect group differences above,

we still are often interested in follow-up analyses after conducting a

multivariate analysis.

• Univariate hypothesis (F ) tests

• Multivariate contrasts

• Confidence intervals/tests for µij − µkj (treatment differences for

jth variable)

• Analysis of discriminant function
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Univariate F -tests

Often interested in univariate ANOVA for testing

H0,i : µ1i
↑

mean of
ith var.
for 1st
group

= µ2i = · · · = µgi, i = 1, . . . , p

• Some advocate a “protected” univariate test approach:

1. Conduct overall size α test of H0 : µ1 = · · · = µg using

multivariate test (e.g. Λ)

2. Test each of H0,i (i = 1, ..., p) at level α only if multivariate test

in step 1 rejects. [That is, when H0 is “accepted” this approach

automatically “accepts” H0,1, H0,2, . . . ,H0,p.]
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Defining our experiment by the p tests in step 2, the overall EER is

(for independent variables when H0 is true):

Pr{at least one H0,i rejects} = (α) (1− (1− α)
p
)

≤ α

What about properties of individual tests when H0 is false??

Suppose:

µ1 =


µ11

µ12

...

µ1p

 = µ
p×1

+


δ

0
...

0

 and µi =


µi1

µi2

...

µip

 = µ, i = 2, . . . , g

Let δ be some value such that our test of H0 : µ1 = · · · = µp

using Λ has power = .50.
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Consider the “partial” experiment defined by the p− 1 tests of

H0,2, H0,3, . . . ,H0,p.

The partial EER for this scenario (assuming independence) is

Pr {at least one rejection among H0,2, . . . ,H0,p}︸ ︷︷ ︸
“A”

= Pr {“A”|Λ rejects} · Pr {Λ rejects}

=
[
1− (1− α)

p−1
]
· (.50)

Thus, the partial EER can be dramatically larger than α

ex p = 10, α = .05⇒ partial EER ∼= .20

Conclusion:

“Protected F test” approach protects overall EER, but may

have poor properties for other inferences

→ Consider tests at α
p level
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Contrasts (multivariate)

• Already considered contrasts of the type C
q×p

µ
p×1

for testing

H0 : Cµ = 0, where each row of C sums to 0

ex Linear trend among 4 observations?

H0 :
[
−3 −1 1 3

]

µday1

µday2

µday3

µday4


• Here consider contrasts of the type

δ = c1µ1 + c2µ2 + · · ·+ cgµg = Mc

where M =
[
µ1 µ2 · · · µg

]
︸ ︷︷ ︸

p×g
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δ̂ = c1x̄1 + c2x̄2 + · · ·+ cgx̄g

var{δ̂} =
g∑

i=1

ci
2 Σ

ni
=

(
g∑

i=1

ci
2

ni

)
Σ

v̂ar{δ̂} =

(
g∑

i=1

ci
2

ni

)
Spℓ

where Spℓ =
1
νE

E and νE =
∑g

i=1(ni − 1).

So, our test is based on

T 2 = δ̂
′ [
v̂ar
{
δ̂
}]−1

δ̂ ∼ T 2
p,νE

or define

H1 =
1∑g

i=1
c2i
ni

δ̂δ̂
′
and Λ =

|E|
|E+H1|

∼ Λp,1,νE

ex Rootstock
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Confidence intervals for treatment differences (µij − µkj)

Interest in components of difference between groups

µi − µk = τ i − τ k

Specifically, interested in the jth component of this difference vector

µij − µkj = τij − τkj

which is estimated by x̄ij − x̄kj

Because we often want to obtain confidence intervals for all g(g − 1)/2

pairwise comparisons for each of p variables simultaneously, we use a

Bonferroni adjustment to protect overall EER.
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100(1− α)% (Simultaneous) Confidence Interval for µij − µkj is:

(x̄ij − x̄kj)± t [α/ (pg(g − 1))]︸ ︷︷ ︸
α
2 divided by

# of comparisons

= pg(g − 1)/2

,[
∑g

i=1(ni−1)]

√
spl,jj

(
1

ni
+

1

nk

)

where spl,jj is the jth diagonal element of Spℓ = E/ (
∑g

i=1(ni − 1))
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Warning for SAS implementation

SAS uses upper α
g(g−1) quantile instead of upper α

pg(g−1) quantile of t

distribution

(Bonferroni intervals are part of univariate output.)

→ Adjust by specifying ALPHA in MEANS statement

ex p = 3, g = 5, desired overall EER = .05

proc glm;

class group;

model y1 y2 y3 = group;

means group/bon alpha = .016667 ⇐ .05
p ;

run;

ex Rootstock
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Analysis of discriminant function

(More detail to come in Section V of the course)

g = 2 case:

Choose a to maximize (for a ̸= 0):

[a′ (x̄1 − x̄2)]
2

a′Spℓa
=

a′ (x̄1 − x̄2) (x̄1 − x̄2)
′
a

a′Spℓa

=⇒ a = S−1pℓ (x̄1 − x̄2)

g > 2 case:

Choose a to maximize (for a ̸= 0):

λ1 =
a′Ha

a′Ea

=⇒ λ1 = largest e’value of E−1H and a1 is corresp. e’vec

• Relative importance of 1st disc fcn = λ1∑s
i=1 λi
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ex Rootstock

Girth4 Growth Girth15 Weight

Univariate F 1.93 2.91 11.97 12.16

a = [.4703 − .2627 .6532 − .0738]

Recall that a∗i = ai
√
spℓ,ii = ai ×

√
1
νE

eii, where eii is the ith diagonal

element of E, so

a∗ =
1√
42

[.4703
√
.3200 − .2627

√
12.1428 .6532

√
4.2908 − .0738

√
1.712]

= [.0411 − .1413 .2088 − .0149]

Test for statistical significance of final m discriminant functions:

Λm =

s∏
i=m

1

1 + λi
∼ Λp−m+1,νH−m+1,νE−m+1
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Tests for additional information

Let xℓj =

yℓj

zℓj

← p× 1

← q × 1
, j = 1, . . . , nℓ

be (p+ q)-variate observations from the ℓth group

• Wish to determine if z makes a significant contribution beyond y

in detecting separation of groups

Calculate:

E
(p+q)×(p+q)

=

Eyy Eyz

Ezy Ezz

 and H
(p+q)×(p+q)

=

Hyy Hyz

Hzy Hzz


Λyz =

|E|
|E+H|

Λy =
|Eyy|

|Eyy +Hyy|
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Test of additional info:

Λz|y
↑

“partial Λ

statistic”

=
Λyz

Λy
∼ Λq

↑
# of
vars
in z

,νH ,νE−p
↑

# of
vars
in y
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Two-Way MANOVA (fixed-effects)

Model:

xijk = µ+αi + βj + γij + eijk

i = 1, . . . , a

j = 1, . . . , b

k = 1, . . . , n (for simplicity, assume nij = n ∀ i, j)

•
∑a

i=1 αi =
∑b

j=1 βi =
∑a

i=1 γij =
∑b

j=1 γij = 0

• Assume eijk ∼ Np(0,Σ)
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• x̄i. = average over ith level of factor A

• x̄.j = average over jth level of factor B

• x̄ij = average over ith level of A and jth level of B
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Test for A, B, and AB (interaction):

ΛA =
|E|

|E+HA|
∼ Λp,a−1,ab(n−1)

ΛB =
|E|

|E+HB |
∼ Λp,b−1,ab(n−1)

ΛAB =
|E|

|E+HAB |
∼ Λp,(a−1)(b−1),ab(n−1)
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Follow-up analyses

• Individual F -tests (univariate anova’s)

– As You Might Expect (AYME)

• Contrasts

– AYME

• C.I.’s for treatment effects

– AYME

• Analysis of discriminant function

– AYME

∗ For analyzing contribution of p variables to separation of

levels of A use first dicrim. function (e’vector) of E−1HA

∗ Analyzing levels of B ⇒ use E−1HB

∗ Analyzing levels of AB ⇒ use E−1HAB
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An interlude about interactions...

Suppose we have two levels of factor A and two levels of factor B:

yijk = µ+ αi + βj + γij + ϵijk, i = 1, 2, j = 1, 2
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Is Main Effect for A interpretable in Scenarios II, III, and IV?

• Yes, if “significance” simply refers to size of effect α1 − α2 (i.e.,

effect of A averaged over levels of B).

– “Significant” doesn’t mean “one level is best”

– “Significance of Main Effect for A” is affected by number of

levels of B and sample size for each level
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Mixed Model MANOVA (Split-plot)

ex

4 temperatures (Ti, i = 1, . . . , 4) t = 4

3 days (Dj , j = 1, . . . , 3) d = 3

3 metal alloys (Mk, k = 1, . . . , 3) m = 3

xijk is a p-variate response of metal strength
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III.B.iv. Profile Analysis

p-variate response consists of tests, questions, etc. measured on

members of g groups.

ex Guinea pigs on three diets

• Weights measured at ends of week 1, 3, 4, 5, 6, & 7

Break hypothesis:

H0 : µ1 = µ2 = · · · = µg

into three more specific hypotheses:

H01 : “The g profiles are parallel”

ex H0,1 true might yield a profile plot like:
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H02 : “The g profiles are at same level”

ex H0,1 and H0,2 true might yield a profile plot like:

H03 : “The g profiles are flat”

ex H0,1, H0,2, and H0,3 yields the profile plot:
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Formalizing the null hypotheses

• “Parallelism”: Difference in responses between any time points is

the same for all groups.

H01 : µ1j−µ1(j−1) = µ2j−µ2(j−1) = · · · = µgj−µg(j−1) for j = 2, . . . , p

OR

Cµ1 = Cµ2 = · · · = Cµg

where C
(p−1)×p

=


−1 1 0 · · · 0 0

0 −1 1 · · · 0 0
...

...
...

...
...

0 0 0 −1 1


or C can be any other full row rank (p− 1)×p matrix such that C1 = 0
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• “Same level”: Total (or average) response (over time) is the same

for all groups.

H02 : 1′µ1 = 1′µ2 = · · · = 1′µg

– Note: If H01 holds, we can also refer to H02 as the hypothesis of

“coincident profiles” and H02 can be written:

H02 : µ1j = µ2j = · · · = µgj for j = 1, . . . , p
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• “Flatness”: No change in response (over time) for the profiles —

responses at each time (averaged across groups) are the same.

H03 :
µ11 + µ21 + · · ·+ µg1

g
= · · · = µ1p + µ2p + · · ·+ µgp

g

OR

C

(
µ1 + · · ·+ µg

g

)
︸ ︷︷ ︸

“µ̄”← average profile

= O or Cµ̄ = O

– Note: If H01 and H02 hold, H03 can also be written

H03 : µ11 = µ12 = · · · = µ1p = µ21 = · · · = µgp that is, all pg

response means are equal.
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Tests

Test for H01:

Λ =
|CEC′|

|C(E+H)C′|
∼ Λp−1,νH ,νE

Test for H02:

Λ =
1′E1

1′E1+ 1′H1
∼ Λ1,νH ,νE

⇒ 1− Λ

Λ

νE
νH
∼ FνH ,νE

Test for H03:

T 2 =

(
g∑

ℓ=1

nℓ

)
(Cx̄)

′
(

1

νe
CEC′

)−1
Cx̄ ∼ T 2

p−1,νE

⇒ νE − (p− 1) + 1

νE(p− 1)
T 2 ∼ Fp−1,νE−(p−1)+1
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ex Guinea Pigs

H01: parallel?

H02: same level?

H03: flat?
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III.B.v. Repeated Measures

• Similarities to “profile analysis”

• Each subject measured under several treatments or time points

• Comparing means of treatments applied to each subject:

within-subjects tests

• Comparing levels of factors assigned to groups of subjects:

between-subjects tests
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Structure of g-groups R.M. experiment
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Univariate model: (split-plot):

xijr = µ+ Bi︸︷︷︸
between

+ S(i)j + Ar︸︷︷︸
within

+ BAir︸ ︷︷ ︸
interaction

+εijr

ANOVA Table
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• Standard univariate assumption:

var{xij} = Σ = σ2Ip ∀ i, j ← “sphericity”

Univariate F -tests still valid as long as

C
↑

(p−1)× p

orthonormal
contrast
matrix

ΣC′ = σ2I

This condition is often called “sphericity” (but we’ll say

“generalized sphericity” for clarity)

ex For p = 4, we could use

C =


3/
√
12 −1/

√
12 −1/

√
12 −1/

√
12

0 2/
√
6 −1/

√
6 −1/

√
6

0 0 1/
√
2 −1/

√
2
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Special case of CΣC′ = σ2I:

Σ = σ2


1 ρ · · · ρ

ρ 1 · · · ρ
...

. . .
. . .

...

ρ ρ · · · 1

 = σ2 [(1− ρ)I+ ρ11′]

– This case is called “compound symmetry”
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Univariate strategies

1. Assume “generalized sphericity”

Fehlberg (1980): Use H0 : CΣC′ = σ2I preliminary test

using α = .40. [This test to be discussed later in the course]

If hypothesis is “accepted,” use standard F -tests . . .

. . . for A: F =
MSA

MSE
∼ Fp−1,g(n−1)(p−1)

. . . for AB: F =
MSAB

MSE
∼ F(g−1)(p−1),g(n−1)(p−1)

BUT, even mild departures from CΣC′ = σ2I can seriously

inflate Type I error (Boik, Psychometrika, 1981).

2. Conservative test:

. . . for A: F =
MSA

MSE
∼̇ F1,g(n−1)

. . . for AB: F =
MSAB

MSE
∼̇ F(g−1),g(n−1)

• Too conservative
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3. Adjusted F -tests

• A compromise between approaches 1 and 2 when sphericity violated.

• Greenhouse and Geisser (1959) recommend approximate F -tests

involving within-subjects factor which reduce numerator and

denominator d.f. by a factor of

ε =

[
tr
(
Σ− 1

p11
′Σ
)]2

(p− 1)tr

[(
Σ− 1

p11
′Σ
)2] SAS: “G – G ε”

– To estimate ε, use Σ̂ = E
νE

– F -tests . . .

. . . for A: F = MSA
MSE ∼ Fε̂(p−1),ε̂g(n−1)(p−1)

. . . for AB: F = MSAB
MSE ∼ Fε̂(g−1)(p−1),ε̂g(n−1)(p−1)
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– ε and ε̂ ∈ ( 1
p−1
↑

general

(non-spherical)

Σ

, 1
↑

sphericity

holds

)

– Approach is generally too conservative, especially for small n

• Huynh and Feldt (1976) give another expression

for ε SAS: “H – F ε”

– Less conservative

– “H – F ε” can exceed 1 ⇒ set equal to 1
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Multivariate Model:

xij = µ+ βi + εij

• Notes about βi

– βi is a p-vector of main effects for group i

– Tests on factor A (within subjects) and AB interaction

constructed with contrasts of βi (as in profile analysis)

• Standard multivariate assumption:

var{xij} = Σ ∀ i, j

Note: Σ is completely unrestricted (no sphericity requirement, etc.)

• Several similarities with g groups profile analysis

95



Contrast Matrices in SAS Proc GLM (“repeated” statement)

– Assume p=5 times/variables

contrast or contrast(5): contrast(2):
1 0 0 0 −1
0 1 0 0 −1
0 0 1 0 −1
0 0 0 1 −1




1 −1 0 0 0

0 −1 1 0 0

0 −1 0 1 0

0 −1 0 0 1



polynomial

‘‘repeated time 5

(1 2 5 10 20) polynomial’’:
−2 −1 0 1 2

2 −1 −2 −1 2

1 −2 0 2 −1
1 −4 6 −4 1




−.43 −.36 −.17 .15 .80

.43 .21 −.33 −.71 .39

−.43 .14 .73 −.51 .08

.49 −.78 .37 −.09 .01
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helmert:
1 −.25 −.25 −.25 −.25
0 1 −.33 −.33 −.33
0 0 1 −.5 −.5
0 0 0 1 −1


← The helmert contrast matrix
identifies the time at which
the treatments cease to

change or plateau

mean or mean(5) profile:
1 −.25 −.25 −.25 −.25
−.25 1 −.25 −.25 −.25
−.25 −.25 1 −.25 −.25
−.25 −.25 −.25 1 −.25




1 −1 0 0 0

0 1 −1 0 0

0 0 1 −1 0

0 0 0 1 −1
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• Test for A (within subjects)

– Analogous to “flatness” test in profile analysis

– Want to compare means for x1, . . . , xp averaged across levels of B

Let µ̄ =

g∑
i=1

µi/g = (µ·1, . . . , µ·p)
′

H0 : µ·1 = . . . = µ·p or Cµ̄ = O

ex C =


−1 1 0 · · · 0 0

0 −1 1 · · · 0 0
...

...
...

...
...

0 0 0 · · · −1 1


or some similar
contrast matrix

98



Test statistic for A:

T 2 = N
↑∑g

i=1ni

(C x̄
↑

grand
mean

)′(C Spℓ︸︷︷︸
E
νE

C′)−1( C︸︷︷︸
(p−1)×p

x̄) ∼ T 2
p−1,νE

νE − (p− 1) + 1

νE(p− 1)
T 2 ∼ Fp−1,νE−(p−1)+1

OR

Λ = |CEC′|
|C(E+H∗)C′| ∼ Λp−1,1,νE

where H∗ = N x̄x̄′ is from the partitioning

g∑
i=1

n1∑
j=1

xijx
′
ij = E+H+N x̄x̄′
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• Test for B (between subjects)

– Analogous to “same level” test in profile analysis

– Want to compare group means (averaging over p levels of A)

H0 : 1′µ1 = · · · = 1′µg or
1
√
p
1′µ1 = · · · = 1

√
p
1′µg︸ ︷︷ ︸

SAS

∗ That is, we can just conduct one-way ANOVA on zij = 1′xij , so

the test statistic for B is

Λ =
1′E1

1′E1+ 1′H1
∼ Λ1,νH ,νE
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• Test for AB interaction

– Analogous to “parallelism” in profile analysis

H0 : Cµ1 = · · · = Cµg

Test statistic for AB:

Λ =
|CEC′|

|C(E+H)C′|
∼ Λp−1,νH ,νE
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ex Wear of fabrics

• Measured in 3 periods (within-subjects factor)

– 1st 1000 revolutions

– 2nd 1000 revolutions

– 3rd 1000 revolutions

• 2 abrasive surfaces (between subjects factor #1)

• 2 fillers (between subjects factor #2)

• 3 levels of “proportion of filler” (between subjects factor #3)

– 25% filler

– 50% filler

– 75% filler

? Linear or Quadratic trend in proportion of filler?

? Linear or Quadratic trend in periods

? How do univariate and multivariate tests compare?
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Repeated Measures with 2 Within-Subjects Factors
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Model:

xij = µ+ γi + εij

• γi is a p-vector of main effects for group i

• effects for A,B,AB,AC,BC,ABC assessed with contrasts

• Denote a = number of levels for factor A

• Denote b = number of levels for factor B

• To test factors A,B, and AB, specify contrast matrices with

(a− 1), (b− 1), and (a− 1)(b− 1) linearly independent rows,

respectively.
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ex Blood data

– Compare 4 different reagents used in blood testing. (Reagent 1

is standard and reagents 2, 3, 4 are inexpensive alternatives.)

A∗ =


−1 1 0 0

−1 0 1 0

−1 0 0 1


– Measuring 3 blood counts (white blood, red blood, hemoglobin)

B∗ =

 −1 0 1

1 −2 1


– 2 groups of 10 subjects with potentially different blood

properties — each subject’s sample has 12 measures
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Note: A = A∗ ⊗ 1′b and B = 1′a ⊗B∗, where a = 4 and b = 3
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a′1
1×12

⇒ R1 vs. R2

a′2 ⇒ R1 vs. R3

a′3 ⇒ R1 vs. R4

b′1
1×12

⇒ white vs. hemoglobin (or linear in bc’s)

b′2 ⇒ red vs. white+hemo
2 (or quadratic in bc’s)

G
6×12

=


a1 ∗ b1

a1 ∗ b2

...

a3 ∗ b2

 = A∗ ⊗B∗

where “∗” is an element-wise product

(So, first row of G is [1 0 -1 -1 0 1 0 0 0 0 0 0])
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Test for A (Reagents):

• T 2 = N(A x̄
↑

grand
mean

)′(ASpℓ

↑
1

νE
E

A′)−1Ax̄ ∼ T 2
a−1, νE

↑∑g
i=1(ni − 1)

when only

one between
subjects

factor is used

ex T 2
Reagent ∼ T 2

3,18

OR

• Λ = |AEA′|
|A(E+H∗)A′| ∼ Λa−1,1,νE

where H∗ = N x̄x̄′ is from the partitioning

g∑
i=1

n1∑
j=1

xijx
′
ij = E+H+N x̄x̄′
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Test for B (Blood counts):

• T 2 = N(Bx̄)′(BSpℓB
′)−1Bx̄ ∼ T 2

b−1,νE

OR

• Λ = |BEB′|
|B(E+H∗)B′| ∼ Λb−1,1,νE

Test of AB interaction:

• T 2 = N(Gx̄)′(GSpℓG
′)−1Gx̄ ∼ T 2

(a−1)(b−1),νE

OR

• Λ = |GEG′|
|G(E+H∗)G′| ∼ Λ(a−1)(b−1),1,νE
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Test for C (groups):

• Conduct ANOVA test (F -test) using

zij = 1′xij , i = 1, . . . , g, j = 1, . . . , ni

OR

• Λ = 1′E1
1′E1+1′H1 ∼ Λ1,νH ,νE

Tests for AC,BC,ABC interactions:

• Λ = |AEA′|
|A(E+H)A′| ∼ Λa−1,νH ,νE

• Λ = |BEB′|
|B(E+H)B′| ∼ Λb−1,νH ,νE

• Λ = |GEG′|
|G(E+H)G′| ∼ Λ(a−1)(b−1),νH ,νE

Note: Between subjects effects (e.g., C) and associated interactions

(e.g., AC, BC, ABC) use H (not H∗)

ex Blood data in SAS
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III.B.vii. Tests on Covariance Matrices
(Reference: RC, Ch. 7)

• H0 : Σ = Σ0 vs. H1 : Σ ̸= Σ0 (assuming MVN)

u = ν
[
ln |Σ0| − ln |S|+ tr{SΣ−10 } − p

]
is a modification of the likelihood ratio with ν = degrees of freedom

for S.

– ν large:

u ∼̇ χ2
1
2p(p+1)

– ν small to moderate:[
1− 1

6ν − 1

(
2p+ 1− 2

p+ 1

)]
u ∼̇ χ2

1
2p(p+1)
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• H0 : Σ = σ2I (“sphericity” . . . assuming MVN)

Likelihood ratio test:

λ =

[
|S|

(tr{S}/p)

]n
2

−2 lnλ = −n lnu

where u = λ
2
n =

pp|S|
(tr{S})p

=
pp
∏p

i=1 λi

(
∑p

i=1 λi)
p

and λ1, . . . , λp are the e’vals of S

– ν large: −n lnu ∼̇ χ2
1
2p(p+1)−1

– ν small to moderate: −
(
ν − 2p2+p+2

6p

)
lnu ∼̇ χ2

1
2p(p+1)−1
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– Note: Testing CΣC′ = σ2I

use CSC′ in place of S in the test, i.e.,

−n ln

(
(p− 1)p−1|CSC′|
(tr{CSC′})p−1

)
∼ χ2

1
2 (p−1)(p)−1

where C
(p−1)×p

has orthonormal contrasts as its rows

ex p = 4

C =


3/
√
12 −1/

√
12 −1/

√
12 −1/

√
12

0 2/
√
6 −1/

√
6 −1/

√
6

0 0 1/
√
2 1/

√
2


– Often called “Mauchly’s test”

∗ Calculated by SAS with “PRINTE” option of “REPEATED”

statement in PROC GLM.

– Fehlberg (1980) recommends a preliminary test of Σ = σ2I at

α = .40 before using standard univariate F -tests in r.m. analysis.
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• H0 : Σ1 = Σ2 = · · · = Σg (assuming MVN for all groups)

“Box’s M” =
|S1|

ν1
2 |S2|

ν2
2 · · · |Sg|

νg
2

|Spℓ|
∑

i
νi
2

where νi = ni − 1, i = 1, . . . , g and Spℓ =
∑g

i=1 νiSi∑g
i=1 νi

– M near 0 ⇒ “reject H0”

– M near 1 ⇒ “accept H0”

– Note: M =

g∏
i=1

(
|Si|
|Spℓ|

) νi
2

. . . is maximized at 1 when S1 = · · · = Sg

. . . approaches 0 when one or more |Si| is very small (with other |Si|
large)

– u = −2(1− c1) lnM ∼̇ χ2

[ 12 (g−1)p(p+1)]

where c1 =
(∑g

i=1
1
νi
− 1∑g

i=1 νi

)
2p2+3p−1

6(p+1)(g−1)
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– Note: M -test not recommended pre-test before T 2 or MANOVA

tests

∗ Sensitive to nonnormality (often of little concern) and innocuous

forms of heterogeneity (e.g., varying amounts of kurtosis)

– Note: A better approximation is u ∼̇Fa1,a2 . See RC for details.
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III.C.i. Multivariate Multiple Regression

A short review of vec and Kronecker notation

Let A
m×n

=


a′1·

a′2·
...

a′m·

 =

[
a·1
↑

an m-vector

a·2 · · · a·n
]
= (aij)

• vec A =


a·1

a·2
...

a·n

 R: “c(A)” gives vec A
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Let B
p×q

= (bij)

• A
m×n

⊗ B
p×q

=


a11B a12B · · · a1nB

a21B a22B · · · a2nB
...

...
. . .

...

am1B am2B · · · amnB


︸ ︷︷ ︸

mp×nq

R: “kronecker(A,B)” gives A⊗B
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Some properties (without proof)

Assuming that all dimensions are appropriate for matrix

multiplication. . .

✓(a) (A⊗B)(C⊗D) = (AC)⊗ (BD)

✓(b) vec (ABC) = (C′ ⊗A)vec B

(c) tr{AB} = (vec A′)′ vec B = (vec A)′ vec B′

(d) tr{ABCD} = (vec A′)′ (D′⊗B) vec C = (vec A)′ (B⊗D′) vec C′

✓(e) (A⊗B)′ = A′ ⊗B′

✓(f) (A⊗B)−1 = A−1 ⊗B−1
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Univariate Multiple Regression:

y
n×1

= X
n×r

β
r×1

+ e
n×1

• Assume E{e} = 0 and var{e} = σ2In. Then

β̂
↑

O.L.S.
estimator

= (X′X)−1X′y

is B.L.U.E. for β.

• Note: we’ll use q to denote the # of xs and r = q + 1 to denote the

# of columns in the X matrix when using an intercept
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Multivariate Multiple Regression:

Y = XB+Ξ

where

Y =


y′1·
...

y′n·

 =
[
y·1 · · · y·p

]

B =
[
β·1 β·2 · · · β·p

]

Ξ =


e′1·
...

e′n·

 =
[
e·1 · · · e·p

]
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• Note that

y·j
n×1

= X
n×r

β·j
r×1

+ e·j
n×1

• Assume E{Ξ} = 0, var{ei·} = Σ
p×p

, and cov{ei·, ek·} = 0
p×p

for all

i ̸= k

• Question: Is B̂
r×p

= (X′X)−1X′Y a B.L.U.E.?
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Rewrite model:

vec Y = vec (XB) + vec (Ξ)

= (Ip ⊗X)︸ ︷︷ ︸
↑

rank = pr

when rank(X)=r

vec B︸ ︷︷ ︸
≡ β

pr×1

+vec (Ξ)︸ ︷︷ ︸
≡ e

np×1

Note: E{e} = 0

and

var{e} = var



e·1
...

e·p


 =


σ11In σ12In · · · σ1pIn

σ21In σ22In · · · σ2pIn
...

...
. . .

...

σp1In σp2In · · · σppIn

 = Σ
p×p
⊗ In

• Since var{ e
np×1
} does not take the form σ2Inp, the B.L.U.E. for β

will be the G.L.S. estimator for β (which depends on the unknown

Σ) BUT. . .
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β̂ =


(
Ip ⊗ X

n×p

)′
︸ ︷︷ ︸

(Ip⊗X′)

(Σ⊗ In)
−1︸ ︷︷ ︸

(Σ−1⊗In)

(
Ip ⊗ X

n×p

)
−1

(Ip ⊗X)
′
(Σ⊗ In)

−1
vec Y

=
[(
Σ−1 ⊗X′

)
(Ip ⊗X)

]−1
(Ip ⊗X′)

(
Σ−1 ⊗ In

)
vec Y

[by prop’s (a),(e),(f)]

=
[
Σ−1 ⊗ (X′X)

]−1 (
Σ−1 ⊗X′

)
vec Y [by prop (a)]

=
(
Σ⊗ (X′X)−1

) (
Σ−1 ⊗X′

)
vec Y [by prop (f)]

=
(
Ip ⊗ (X′X)−1X′

)
vec Y [by prop (a)]

⇒ B̂ = (X′X)−1X′Y [by prop (b)]

• O.L.S. = G.L.S. is BLUE!

(Even when Σ is unknown)
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• Despite the fact that the p variables yi1,...,yip
are correlated, all the

info needed to estimate β·i
r×1

is found in y·i only. That is,

multivariate regression coefficient matrix B̂
r×p

can be formed by

pasting together the p columns from p separate univariate

regressions (as long as each regression uses the same predictors X
n×r

)

• But all β̂ij in B are intercorrelated . . . must take multivariate

approach to inference
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Assumptions for Multivariate Multiple Regression:

Model is: Y
n×p

= X
n×r

B
r×p

+ Ξ
n×p

or vec Y = (I⊗X) vec B︸ ︷︷ ︸
=“β′′

+vec Ξ

Assumptions:

1. E{Y} = XB or E{Ξ} = 0

2. var{vec Y} = var{vec Ξ} = Σ⊗ In

(That is, var{yi·} = Σ for all i = 1, . . . , n and

cov{yi·,yj·} = 0
p×p

for all i ̸= j)
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Some properties of B̂ = (X′X)−1X′Y

1. B̂ is called the “least squares estimator” because it “minimizes”

E
p×p

= Ξ̂
′
Ξ̂ = (Y −XB̂)′(Y −XB̂) (where E is an “error matrix”

analogous to the E matrix in MANOVA). Matrix is “minimized” in

several senses:

(a) Let B̃ be some other estimate of B.

Then,

(Y −XB̃)′(Y −XB̃) = (Y −XB̂)′(Y −XB̂) +A

where A is a positive definite matrix

(b) B = B̂ minimizes tr{(Y −XB)′(Y −XB)

(c) B = B̂ minimizes |(Y −XB)′(Y −XB)|
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2. Let Ŷ = XB̂ = X(X′X)−1X′Y be predicted values and

Ξ̂ = Y − Ŷ = (I−X(X′X)−1X′)Y be residuals

Then

(a) Residuals are perpendicular to the columns of X

→ X′Ξ̂ = X′(I−X(X′X)−1X′)Y = 0
r×p

(b) Residuals are perpendicular to the columns of Ŷ

→ Ŷ′Ξ̂ = B̂′X′(I−X(X′X)−1X′)Y = 0
p×p

(c) Total sum of squares and cross products (“Total SS and CP”) can

be partitioned as:

Y′Y = (Ŷ + Ξ̂)′(Ŷ + Ξ̂)

Y′Y︸ ︷︷ ︸
↑

total
SS&CP
matrix

= Ŷ′Ŷ︸ ︷︷ ︸
↑

predicted

SS&CP
matrix

+ Ξ̂
′
Ξ̂︸︷︷︸
↑

error
SS&CP
matrix
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3. B̂ is B.L.U.E. for B

• Minimum variance estimator among all unbiased estimators

• If columns of Ξ are normal, B̂ is B.U.E.

4. Elements of B̂ are intercorrelated

B
r×p

=


β̂01 β̂02 · · · β̂0p

β̂11 β̂12 · · · β̂1p

...
...

. . .
...

β̂q1 β̂q2 · · · β̂qp


• β̂s in each row are correlated due to correlation in y

• β̂s in each column are correlated due to correlation in x
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5. Unbiased estimate of var(yi·) = var(ei·) = Σ.

S =
E

n− q − 1
=

(Y −XB̂)′(Y −XB̂)

n− q − 1
=

Ξ̂
′
Ξ̂

n− q − 1

=
1

n− q − 1
(Y′Y − B̂′X′Y)

Proof:

E{ Ξ̂
n×p
} = E{Y −XB̂}

= E{(In −X(X′X)−1X′)Y}

= (In −X(X′X)−1X′) E{XB+Ξ}

= (In −X(X′X)−1X′) E{Ξ}

= 0
n×p
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E{ê′·iê·j} = E
{[

(In −X(X′X)−1X′)y·i
]′ [

(In −X(X′X)−1X′)y·j
]}

= E
{[

(In −X(X′X)−1X′)e·i
]′ [

(In −X(X′X)−1X′)e·j
]}

= E{e′·i
(
In −X(X′X)−1X′

) (
In −X(X′X)−1X′

)︸ ︷︷ ︸
In−X(X′X)−1X′

e·j}

= E
{
tr
{(

In −X(X′X)−1X′
)
e·je

′
·i
}}

= tr{
(
In −X(X′X)−1X′

)
E {e·je′·i}︸ ︷︷ ︸

σijIn

}

= σijtr
{(

In −X(X′X)−1X′
)}

= σij

(
tr {In} − tr

{
X′X(X′X)−1

})
= σij (n− (q + 1))

∴ E
{

1
n−q−1 Ξ̂

′
Ξ̂
}
= Σ = (σij)
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Note: If X is not full rank, we can obtain similar results based on

B̂ = (X′X)−X′Y . . . we’ll leave that discussion for “linear models”!

Another note: v̂ar

{
e

np×1

}
=
(

1
n−q−1E

)
⊗ In

and E
{(

1
n−q−1E

)
⊗ In

}
= Σ⊗ In

6. Variance of β̂ (i.e., var{vec B̂})

var

{
β̂

rp×1

}
= var

{[
(I⊗X)

′
(I⊗X)

]−1
(I⊗X)

′
vec Y

}
=
[
Ip ⊗ (X′X)

−1
X′
]
var{vec Y}

[
Ip ⊗ (X′X)

−1
X′
]′

=
[
Ip ⊗ (X′X)

−1
X′
]
var{vec Ξ}

[
Ip ⊗ (X′X)

−1
X′
]′

=
[
Ip ⊗ (X′X)

−1
X′
]
(Σ⊗ In)

[
Ip ⊗X (X′X)

−1
]

= Σ⊗
[
(X′X)

−1
X′InX (X′X)

−1
]

= Σ⊗ (X′X)
−1
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Notes:

(a) v̂ar{β̂} =

“S”︷ ︸︸ ︷(
1

n− q − 1
E

)
⊗ (X′X)

−1

(b) cov{β̂·i, β̂·j} = σij(X
′X)−1

(c) cov{β̂·i
r×1

, ê·j
n×1
} =

cov
{
(X′X)

−1
X′y·i,

(
In −X (X′X)

−1
X′
)
y·j

}
= cov

{
(X′X)

−1
X′e·i,

(
In −X (X′X)

−1
X′
)
e·j

}
= (X′X)

−1
X′σijIn

(
In −X (X′X)

−1
X′
)

= σij

[
(X′X)

−1
X′ − (X′X)

−1
X′X (X′X)

−1
X′
]

= 0
r×n
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(d) Estimating mean of x′0
1×r

B
r×p

• x′0B̂ is an unbiased estimator of x′0B

• var{x′0B̂} = Σ(x′0(X
′X)−1x0︸ ︷︷ ︸

scalar

)

(e) Estimating a new observation y0 using x0

y′0 = x′0B+ e′0

• x′0B̂ is an unbiased estimator of y0

• var{y′0 − x′0B̂} ← “forecast error variance”

– Note that

cov{y′0,x′0B̂} = cov
{
e′0,x

′
0(X

′X)−1X′ (XB+Ξ)
}

= cov
{
e′0,x

′
0(X

′X)−1X′Ξ
}

= 0
p×p

since e′0 is indep. of Ξ =


e′1·
...

e′n·
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– So

var{y′0 − x′0B̂} = var{y′0}+ var{x′0B̂} − 2 cov{y′0,x′0B̂}

= Σ+Σ ·
(
x′0(X

′X)−1x0

)
+ 0

= Σ ·
[
1 + x′0(X

′X)−1x0

]
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7. MLE’s of B
r×p

and Σ

Thus far, we have assumed E{e
↑

vec Ξ

} = 0 and var{e} = Σ⊗ In

If we assume:

e
np×1

∼ Nnp (0,Σ⊗ In)

then MLE’s of B and Σ are

B̂ = (X′X)−1X′Y

and

Σ̂
p×p

=
1

n
Ξ̂
′
Ξ̂ =

1

n
E

where

E ∼Wp(n− q − 1,Σ)

Proof: omitted.
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8. Model Corrected for Means Rewrite

Y = X
n×r

B+Ξ

as

Yc
n×p

= Xc
n×q

Bc
q×p

+Ξ where q = # of predictors = r − 1

and

Yc =


y11 − ȳ·1 y12 − ȳ·2 · · · y1p − ȳ·p

...
...

yn1 − ȳ·1 yn2 − ȳ·2 · · · ynp − ȳ·p



Xc =


x11 − x̄·1 · · · x1q − x̄·q

...
...

xn1 − x̄·1 · · · xnq − x̄·q
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Then B̂c = S−1xxSxy

where S =

Syy Syx

Sxy Sxx

 is the sample covariance matrix of the

p+ q variables (y1, . . . , yp, x1, . . . , xq)

Ŷ =
[
ȳ·1 1n · · · ȳ·p 1n

]
+ Xc

n×q
B̂c
q×p
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Hypothesis Tests (assuming e ∼ Nnp{0,Σ⊗ Ir})

H0 : B1
q×p

= 0 (Test of overall regression)

where B
r×p

=

β′0
B1

←
←

1× p

q × p

vector of intercepts

Partition the total SS and CP matrix:

Y
p n

′Y
n p

=
(
Y −XB̂

)′ (
Y −XB̂

)
︸ ︷︷ ︸

=Y′Y−B̂′X′Y = E

+B̂′X′Y

To avoid inclusion of β′0 = 0′ as part of the null hypothesis, we

subtract nȳȳ′:

Y′Y − nȳȳ′︸ ︷︷ ︸
corrected total SS & CP

= Y′Y − B̂′X′Y︸ ︷︷ ︸
= E

p p

+ B̂′X′Y − nȳȳ′︸ ︷︷ ︸
= H

p×p
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Λ =
|E|

|E+H|
=
|Y′Y − B̂′X′Y|
|Y′Y − nȳȳ′|

∼ Λp, q︸︷︷︸
r−1

,n− q − 1︸ ︷︷ ︸
n−r

• H is “large” when β̂ij ’s are large

• The 4 MANOVA statistics can be calculated as functions of the

eigenvalues of E−1H, (λ1, . . . , λs):

– Wilks’: Λ =
∏s

i=1
1

1+λi

– Roy’s: θ = λ1

– Pillai’s Trace: V =
∑s

i=1
λi

1+λi

– Lawley-Hotelling Trace: U =
∑s

i=1 λi

→ Critical values (and p-values) based on approximate

F -distributions given on the MANOVA pages on these notes

. . . use:

s = min(p, q)

m = 1
2 (|q − p| − 1)

N = 1
2 (n− q − p− 2)
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• Essential dimensionality of E−1H︸ ︷︷ ︸
p×p

is the essential dimensionality of

B1
q×p

. For example, a single non-zero eigenvalue (i.e., rank of B1 is 1)

could be due to several causes:

1. B1 has only one nonzero row

⇒ only one of the x’s predicts the y’s

2. B1 has only one nonzero column

⇒ only one of the y’s is predicted by the x’s

3. All of the rows of B1 are linear combinations of each other

⇒ x’s act alike in predicting y’s

[or, in other words]

All of the columns of B1 are linear combinations of each other

⇒ only one dimension in the y’s as they relate to x’s
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• “Essential dimensionality” of E−1H is number of substantially

non-zero eigenvalues and takes value less than or equal to

s = min(p, q)

• Λ can also be calculated from the partitioned sample covariance

matrix of (y1, . . . , yp, x1, . . . , xq)

S
(p+q)×(p+q)

=

Syy
p×p

Syx
p×q

Sxy
q×p

Sxx
q×q


using

|S|
|Sxx||Syy|

which is essentially a test of independence between y and x since

Independence of y and x ⇒ |S| = |Syy||Sxx|
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H0 : Ba = 0 Tests on a subset of the x’s

Hypothesis states that the y’s do not depend on the last h of the

x’s. That is,

H0 : Badd = 0

where

B
r×p

=

Bred

Badd

 ← (r − h)× p

← h× p

Compare SS and CP matrix for full and reduced models:

Hdiff
p×p

= B̂′X′Y − B̂′rX
′
rY ← difference in regression SS and CP

and

Efull
p×p

= Y′Y − B̂′X′Y ← E matrix based on full model
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Then

Λxq−h+1,··· ,xq|x1,··· ,xq−h
=

|Efull|
|Efull +Hdiff |

=
|Efull|
|Ered|

=
|Y′Y − B̂′X′Y|
|Y′Y − B̂′redX

′
redY|

∼ Λp,h,n−q

↑
# of xs

−1

• Note:

Λxq−h+1,··· ,xq|x1,··· ,xq−h
=

(
|Y′Y−B̂′X′Y|
|Y′Y−nȳȳ′|

)
(
|Y′Y−B̂′

redX
′
redY|

|Y′Y−nȳȳ′|

)
=

Λfull

Λred

→ makes full vs. reduced testing simple to carry out
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• Note: θ, V , and U can be calculated from eigenvalues of E−1fullHdiff

with

s = min(p, h)

m =
1

2
(|h− p| − 1)

N =
1

2
(n− h− p− 2)
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Subset Selection

Finding a subset of the x’s to include in a model

• Forward Selection

(Step 1)

Start with

B̂i =

β̂01 β̂02 · · · β̂0p

β̂i1 β̂i2 · · · β̂ip


and calculate

Λxi
=
|Y′Y − B̂′iX

′Y|
|Y′Y − nȳȳ′|

∼ Λp,1,n−2

for i = 1, . . . , q. Add the xi that minimizes Λxi
(as long as

Λxi
< Λα,p,1,n−2 — stop otherwise)
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(Step j + 1, j = 1, 2, . . .)

Let x1, . . . , xj be the variables added in previous steps. Calculate

Λxi|x1,...,xj
∼ Λp,1,n−j−1

for all xi among the q − j remaining candidate variables. For the

xi that minimizes Λxi|x1,...,xj
:

– add xi if Λxi|x1,...,xj
< Λα,p,1,n−j−1

– stop the procedure if Λxi|x1,...,xj
> Λα,p,1,n−j−1

• Backward Elimination

Start with all x’s and delete one at a time until the least valuable

remaining x is significant. For the m remaining x’s after a given

step, find the xi maximizing

Λxi|x1,...,xi−1,xi+1,...,xm
∼ Λp,1,n−m−1

– drop xi if Λxi|x1,...,xi−1,xi+1,...,xm
> Λα,p,1,n−m−1

– stop the procedure if xi if Λxi|x1,...,xi−1,xi+1,...,xm
< Λα,p,1,n−m−1
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• Stepwise

– Add most significant candidate xi if partial Λ is less than critical

value

– Then, remove least significant selected xi if partial Λ is greater than

critical value

• Best Subsets

Choose “best” subset of size ℓ, for ℓ = 1, . . . , q, with respect to

some criterion (e.g., a multivariate extension of Mallow’s Cp, or

tr{S}, etc.)

After selecting a subset of the x’s, subset of y’s may be

selected using “stepwise discriminant” approach . . . to be discussed later.
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ex chemical reaction data

How are the responses (y1, y2, and y3) affected by the inputs

(x1, x2, and x3)?

y1 = % of unchanged starting material

y2 = % converted to the desired product

y3 = % of unwanted by-product

x1 = temperature

x2 = concentration

x3 = time

• Regress y on x to obtain B̂ and test B1 = 0, where B =

β′0
B1

.
• Determine what the eigenvalues of E−1H reveal about the essential

rank of B̂1 and the power of the 4 (“MANOVA”) statistics.

NOTE: “MTEST/PRINT DETAILS” gives eigenvalues of

(E+H)−1H (ξ1, . . . , ξs) and ξi =
λi

1+λi
, and λi =

ξi
1−ξi
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• Check the significance of x1x2, x1x3, x2x3, x
2
1, x

2
2, and x2

3

adjusted for x1, x2, and x3
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III.C.ii Seemingly Unrelated Regressions (SUR)

• Standard multivariate regression:

Y = XB+Ξ

or 
y·1
...

y·p


︸ ︷︷ ︸
vec Y

=


X 0

. . .

0 X


︸ ︷︷ ︸

I
p×p
⊗ X

n×p


β1

...

βp


︸ ︷︷ ︸
vec B

+


e·1
...

e·p


︸ ︷︷ ︸
vec Ξ

– Note: each y·1 uses the same regressors X
n×r

– vec B̂ = (I⊗ (X′X)−1X′)vec Y

or

B̂ = (X′X)−1X′Y is B.L.U.E. even though var{vec Y} = Σ⊗ I

– What if each y·j uses different regressors Xj
n×rj

?
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• SUR Model

y·j
n×1

= Xj
n×rj

βj
rj×1

+ ej
n×1

j = 1, . . . , p

ex y·j is the jth economic outcome for n regions and Xj is the

matrix of economic indicators (unemployment, housing starts, etc.)

and the indicators used in the model are potentially different for

each outcome—that is, Xj ̸= Xj′
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• Model assumptions:


y·1

y·2
...

y·p


︸ ︷︷ ︸
np×1

=



X1
n×r1

0

X2
n×r2

. . .

0 Xp
n×rp


︸ ︷︷ ︸

np×(
∑p

j=1 rj)


β1

β2

...

βp


︸ ︷︷ ︸

(
∑p

j=1 rj)×1

+


e1

e2
...

ep


︸ ︷︷ ︸
np×1

OR

y∗ = X∗β∗ + e∗

cov{ei, ej} = σijIn ← independent observations

⇒ var{e∗} = Σ
p×p
⊗ In = Σ∗

np×np
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• OLS estimator

β̂
∗
OLS =

(
X∗′X∗

)−1
X∗′y∗ =


(X′1X1)

−1
X′1y·1

...(
X′pXp

)−1
X′py·p

 =


β̂1,OLS

...

β̂p,OLS


is not BLUE in general
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– Zyskind condition states that the OLS estimator is BLUE if and

only if there exists a matrix Q such that Σ∗X∗ = X∗Q

∗ In standard multivariate regression, Σ∗ = Σ
p×p
⊗ In and

X∗ = Ip ⊗ X
n×r

and

Σ∗X∗ =

(
Σ
p×p
⊗ In

)(
Ip ⊗ X

n×r

)
= Σ⊗X

=

(
Ip ⊗ X

n×r

)
︸ ︷︷ ︸

X∗

(
Σ
p×p
⊗ In

)
︸ ︷︷ ︸

Q

Therefore, OLS is BLUE under standard multivariate regression

assumptions

∗ In SUR case, there is no simple way of writing X∗, and in general,

there exists no Q satisfying Σ∗X∗ = X∗Q

• Use β̂
∗
SUR =

(
X∗′Σ∗−1X∗

)−1
X∗′Σ∗−1y∗
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III.C.iii Canonical Correlation Analysis

Objective: summarize the linear relationship between two groups of

variables y = (y1, . . . , yp) and x = (x1, . . . , xq)

– Neither x nor y considered “dependent”

– Multivariate extension of the squared multiple correlation

coefficient (used to relate a single response y with x).

• Consider a single random variable y and a random vector x

Recall

var


y
x

 = S =

Syy Syx

Sxy Sxx

 if p=1
=

syy1×1
s′yx

sxy Sxx
q×q


and

corr


y
x

 = R =

Ryy Ryx

Rxy Rxx
q×q

 if p=1
=

 1 r′yx

rxy Rxx
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Squared multiple correlation between y and (x1, . . . , xq) is

R2
y|x =

syxS
−1
xx sxy
syy

= r′yxR
−1
xx rxy

where R2
y|x is themaximum correlation between y and a linear

combination of the x’s

• Extending to the case with y = (y1, . . . , yp) and x = (x1, . . . , xq), a

measure of association between y and x is

R2
M = |S−1yy SyxS

−1
xxSxy| =

s∏
i=1

r2i (s = min(p, q))

where r21, . . . , r
2
s are the eigenvalues of S−1yy SyxS

−1
xxSxy.

– R2
M too small and too heavily dependent on smallest

eigenvalues.

– Instead, work directly with r21, . . . , r
2
s called the “squared

canonical correlations”
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• Largest squared canonical correlation r21 is the maximum squared

correlation between a linear combination of x and a linear

combination of y.√
r21 = corr{a′1y︸︷︷︸

u1

, b′1x︸︷︷︸
v1

} = max
a,b

corr{a′y,b′x}

– u1 = a′1y and v1 = b′1x are the “first canonical variates”

– First s eigenvalues of S−1xxSxyS
−1
yy Syx︸ ︷︷ ︸

q×q

are same as first s eigenvalues

of S−1yy SyxS
−1
xxSxy︸ ︷︷ ︸

p×p

, but eigenvectors are different.

– (S−1yy SyxS
−1
xxSxy − r2Ip)a = 0

∗ If q < p, only q of the eigenvectors a are meaningful

(S−1xxSxyS
−1
yy Syx − r2Iq)b = 0

∗ If p < q, only p of the eigenvectors b are meaningful
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• The canonical correlations r1, . . . , rs respond to the s pairs of

canonical variates:

u1 = a′1y and v1 = b′1x

u2 = a′2y and v2 = b′2x
...

...
...

us = a′sy and vs = b′sx



the s nonredundant
dimensions of the

relationship
(s = min(p, q))

– ui’s are uncorrelated (so are vi’s)

– ui uncorrelated with vj for i ̸= j

• If software requires a symmetric matrix to obtain eigenvalues and

eigenvectors, use

S−1/2xx SxyS
−1
yy SyxS

−1/2
xx

which has eigenvalues r21, . . . , r
2
s and eigenvectors S

1/2
xx bi and

S−1/2yy SyxS
−1
xxSxyS

−1/2
yy

which has eigenvalues r21, . . . , r
2
s and eigenvectors S

1/2
yy ai
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• Importance of the relationship between ui and vi (that is,

importance of r2i ) can be judged by the relative size of λi (the

eigenvalues of E−1H):
λi∑s
j=1 λj

• ai
p×1

= 1
ri
S−1yy
p×p

Syx
p×q

bi
q×1

bi
q×1

= 1
ri
S−1xx
q×q

Sxy
q×p

ai
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• When interpreting the canonical variates, we prefer to use

standardized coefficient vectors

ci =


sy1

0 · · · 0

0 sy2
· · · 0

...
...

. . .
...

0 0 · · · syp

ai,

and

di =


sx1

0 · · · 0

0 sx2
· · · 0

...
...

. . .
...

0 0 · · · sxq

bi

where syi =
√

var{yi} and sxi
=
√
var{xi}.

– More simply, conduct analysis using R−1yy RyxR
−1
xxRxy and

R−1xxRxyR
−1
yy Ryx which have eigenvectors ci and di, respectively,

and have eigenvalues r21, . . . , r
2
s .
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• Properties of canonical correlations:

– r2i invariant to change of scale on y’s or x’s

– r1 exceeds the absolute value of the correlation between any y and

any or all of the x’s.

– r2i = R2
ui|x = R2

vi|y (where R2
ui|x is the squared multiple correlation

between ui and (x1, . . . , xq))
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Statistical Inference:

• H0: no linear relationship between y’s and x’s

or

H0 : B1
q×p

= 0

or

H0: independence of y and x

• Test statistic:

|S|
|Syy||Sxx|

=
|R|

|Ryy||Rxx|
∼ Λp,q,n−1−q

q
≡ Λq,p,n−1−p

since Λp,q,n−1−q
q
= Λq,p,n−1−p

[An exact F test exists for s = min(p, q) ≤ 2, see Λ-to-F

conversions in the MANOVA section]
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• Λ =
∏s

i=1(1− r2i ) is a function of r21, . . . , r
2
s , as are Pillai’s (V ),

Lawley-Hotelling (U), and Roy’s Largest root (θ)

– As strength of relationship between x and y increases, r2i ’s increase

and Λ decreases

– Testing if the s canonical correlations (combined) are significant

– Note: If p = 1,Λ = 1−R2
y|x

– If test rejects, next consider how many r2i ’s are significant

• H0: The canonical correlations rm, . . . , rs are non-significant

Λm =
s∏

i=m

(1− r2i ) ∼ Λp−m+1,q−m+1,n−m−q

or Λq−m+1,p−m+1,n−m−p

[since Λp,νH ,νE

q
= ΛνH ,p,νH+νE−p]

– An approach: Check Λ2, . . . ,Λs to determine number of significant

r2i values.
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Interpretation of canonical variates (e.g., u1 = a′1y and v1 = b′1x)

Wish to assess the contribution of each variable to the canonical

correlation r2i .

– standardized coefficients

– correlations between y1 and uj = a′jy

• Standardized coefficients

Use ci and di to account for differences in scaling among the

variables

– Absolute values of coefficients ci show contribution of each yi

in the presence of the other yi’s.

– Add or remove yi’s ⇒ ci changes

We want this property in multivariate analysis!!
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• Correlations between yi and uj = a′jy (and between xi and

vj = b′jx)

– More frequently used and widely claimed to yield more valid

interpretation of canonical variates (a.k.a. “structure coefficients”)

– corr{yi, uj} is “stable” (not dramatically different) if we add or

remove yi’s . . . sounds nice, but it’s not!

In fact, these correlations provide no information about the

multivariate contribution of the variable yi to the correlation

structure. (Analogous to T 2
p -test vs. p univariate t-tests.)

Rencher (1988, 1992) showed that

s∏
j=1

(corr{yi, uj})2r2j = R2
yi|x

where R2
yi|x is the multiple correlation between yi and (x1, . . . , xq)
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– Although corr{yi, uj} might seem to quantify the importance of yi

in a multivariate relationship with x in the presence of the other y

variables, it summarizes only a univariate relationship.

ex chemical reaction data

? How many r2i ’s are necessary?

? Interpret u1 and v1.

• Recall
√
R2

xi|y =
√∑3

j=1(corr{xi, v1})2r2j .

• First canonical correlation is mostly due to relationship of:

temperature and concentration (suppressed by x1x2, and to a lesser

degree x1x3 and x2
1) with: % changed.
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INPUTS d1i corr{xi, v1}
√

R2
xi|y

x1 = temperature ** 5.01 .69 .69

x2 = concentration ** 5.86 .23 .24

x3 = time 1.65 .45 .51

x1x2 ** -3.92 .41 .43

x1x3 * -2.30 .54 .58

x2x3 0.53 .45 .48

x2
1 * -2.67 .69 .69

x2
2 -1.23 .23 .23

x2
3 0.57 .42 .47

YIELDS c1i corr{yi, u1}
√

R2
yi|x

y1 = % unchanged ** -1.54 -.996 .987

y2 = % converted -0.21 .64 .92

y3 = % by-product -0.47 .85 .91167


