III. Multivariate Statistical Inference

Why use a multivariate approach when conducting tests on p variables?

1. Type I error protection

 $EX \mid p = 10$ univariate tests at $\alpha = .05$

If variables are independent,

Pr{at least one rejection}

 $= 1 - \Pr{\text{all 10 tests "accept"}}$

 $= 1 - (.95)^{10} \cong .40$

In practice, the overall ("experimentwise") Type I error rate will fall in what range??

2. Power

Multivariate test is more powerful in many cases.

 \boxed{EX} All p univariate tests fail to reject, but multivariate test is significant due to combination of small effects on some variables.

3. Understanding variables acting in combination.

A.i. Hotelling's T^2

First consider univariate test of $H_0: \mu = \mu_0$ vs. $H_1: \mu \neq \mu_0$ when σ is known. (Consider only two-sided tests, since one-sided don't readily generalize for p > 1)

Test statistic using r.s. (x_1, \ldots, x_n) :

$$z = \frac{\bar{x} - \mu_0}{\sigma/\sqrt{n}} \sim N(0, 1)$$
 under H_0

or

$$z^2 = \text{square of standardized distance}$$

= $n\left(\frac{\bar{x}-\mu_0}{\sigma}\right)^2 \sim \chi_1^2 \text{ under } H_0$

Multivariate generalization (Σ is known):

$$H_0: \boldsymbol{\mu} = \boldsymbol{\mu}_0 = \begin{bmatrix} \mu_{01} \\ \mu_{02} \\ \vdots \\ \mu_{0p} \end{bmatrix} \text{ vs. } \underbrace{H_1: \boldsymbol{\mu} \neq \boldsymbol{\mu}_0}_{\text{At least one } \mu_i}$$

$$\text{ is not equal to } \mu_{0i}$$

Test statistic using r.s. $(\mathbf{x}_1, \ldots, \mathbf{x}_n)$:

$$z^2 = n(\bar{\mathbf{x}} - \boldsymbol{\mu}_0)' \boldsymbol{\Sigma}^{-1}(\bar{\mathbf{x}} - \boldsymbol{\mu}_0) \sim \chi_p^2$$
 under H_0

More frequently in practice, Σ is unknown.

• Univariate test statistic using r.s. (x_1, \ldots, x_n) :

$$t^{2} = n \left(\frac{\bar{x} - \mu_{0}}{s}\right)^{2} \sim t_{n-1}^{2} \quad \text{under } H_{0}$$
$$= \sqrt{n}(\bar{x} - \mu_{0})(s^{2})^{-1}(\bar{x} - \mu_{0})\sqrt{n}$$
$$= \left[N_{1}\left(0, \sigma^{2}\right)\right] \left[\frac{\text{scaled } \chi^{2}}{df}\right]^{-1} \left[N_{1}\left(0, \sigma^{2}\right)\right]$$

• Multivariate generalization (Hotelling's T^2):

$$T^{2} = n(\bar{\mathbf{x}} - \boldsymbol{\mu}_{0})' \underbrace{\mathbf{S}^{-1}}_{\substack{\uparrow}} (\bar{\mathbf{x}} - \boldsymbol{\mu}_{0}) \sim T^{2}_{p,n-1} \text{ under } H_{0}$$

$$\stackrel{\uparrow}{\underset{\text{unbiased}}{\text{estimate}}} = (\bar{\mathbf{x}} - \boldsymbol{\mu}_{0})' \underbrace{\left(\frac{\mathbf{S}}{n}\right)^{-1}}_{\substack{\downarrow}{\mathbf{x} \text{ and } \mathbf{S}}} (\bar{\mathbf{x}} - \boldsymbol{\mu}_{0}) \quad \leftarrow \text{``characteristic form''}$$

$$\stackrel{\uparrow}{\underset{\text{are indep. sample}}{\text{since they since they since they are based on a r.s. from MVN}} = \underbrace{\sqrt{n}(\bar{\mathbf{x}} - \boldsymbol{\mu}_{0})'}_{N_{p}(\mathbf{0}, \mathbf{\Sigma})} \underbrace{\left[\frac{\sum_{i=1}^{n} (\mathbf{x}_{i} - \bar{\mathbf{x}})(\mathbf{x}_{i} - \bar{\mathbf{x}})'}{n-1}\right]^{-1}}_{\text{random vector vector vector from matrix divided by d.f.}} \underbrace{\sqrt{n}(\bar{\mathbf{x}} - \boldsymbol{\mu}_{0})}_{N_{p}(\mathbf{0}, \mathbf{\Sigma})}$$

		t	رمعه	es of	لمعداراتهما	5	Ţ	72	ر ک				180					1801	≥))				1076) _																	
		(2	er valves			12 to		arproace			22		1	8		5, 100		8	2		10, 200	11	00, 10, 00						2	، ۲	- c	ና ഹ		M {				ۍ ۲		
		<	55	Larger	, c ,		ちた		272	X	i i		60.	1 1	1 (en' 1	2 +	5	Ì	5		72	1 , o5,		100						9	2 2 2	- - - -	1 221	1	1	and			variables	value	
	<i>p</i> = 10									1066.774 351.471	193.842	132.582	101.499 83.121	71.127	62.746	/80.00	48.184	45.202	42.750	40.699 20.061	37.469	36.176	35.043	34.044 33.156	29.881	27.783	25.256 25.256	24.437	23.790 77 824	22.162	21.663	20.973	20.725	20.196	18.976	18.570 118.307		1	4	6	
	6 = d								872.317	290.806	111.676	86.079	70.907	54.041	48.930	45.023	39.463	37.419	35.709	34.258	31.932	30.985	30.149	29.407	26.252	24.624	22.627	21.972	21.451 20.676	20.127	19.718	19.401 19.149	18.943	18.504	17.484	17.141 16.919		.	northone	oritical	
	p = 8							697.356			71.878	59.612	51.572	41.775	38.592	36.082	32.384	30.985	29.798	28.777	27.114	26.428	25.818	187.62	22.913	21.668	20.117	19.600	19.188	18.130	17.801	17.340	17.172	16.814 16.460	15.975	15.692 15.507			S	รจั	
ibution	p = 7						541 890			75.088	49.232	42.881	38.415	32.588	30.590	276.82 CV3 FC	26.525	25.576	24.759	24.049	22.878	22.388	21.950	21.198	19.823	18.890	17.709	117.311	16.992	16.165	15.905	15.540	15.407	15.121	14.447	14.217 14.067			e rach	2	
$ (\bigcup T^{2}_{\alpha,1}, \vee Z + t^{2}_{\alpha/2}, \vee t^{2}_{\alpha/2}, \vee $ Percentage Points of Hotelling's T^{2} Distribution	<i>p</i> = 6						405.920	83.202		47.123	34.911	31.488	28.955 27.002	25.467	24.219	23.189	21.588	20.954	20.403	19.920	19.492 19.112	18.770	18.463	18.184	16.944	16.264	15.388	15.090	14.850	14.222	14.022	13.26/	13.639	13.417	12.890	12.710			d .	•	
$t^2_{\alpha/2, \nu}$ Hotelling's :	p = 5	= 0.05					105.157	45.453	36.561	31.205	25.145	23.281	21.845 20.706	19.782	19.017	17 000	17.356	16.945	16.585	16.265	15.726	15.496	15.287	160.01	14.240	13.762	13.138	12.923	12.748	12.289	12.142	17071	11.858	11.693	11.297	11.160			0	05	
<pre>// // // // // // // // // // // // //</pre>	p = 4	α=(192.468		44.718 33.730	27.202	23.545	21.108	18.086	17.089	16.296	15.117	14.667	14.283	13.663	13.409	13.184	12.983	12.641	12.493	12.359	12.236	11.674	11.356	10.934	10.787	10.668	10.350	10.248	10.16/	10.048	9.931 9.817	9.650	9.552 9.488			Tz in rease	すいて	
$T_{\alpha,1,V}^{2}$	p=3			114 986			22.720	16.766	15.248	14.163	000.01 012.719	12.216	11.806	11.17	10.931	10.719	10.370	10.225	10.095	979.9 974	9.779	9.692	9.612	925.9 174 0	9.200	9.005	8.744	8.652	8.577	8.375	8.309	8.215	8.181	8.105 8.031	7.922	7.857				ىبد خ	
	p = 2			57.000	17.361	13.887	12.001				8.418	8.197	8.012		7.606	7.1504					7.041			6.919 6.885	-		6.503		6.413			0.239 6.216		6.155	-	6.015 5.991			51	1	
Upper	p = 1	>(18.513	10.128	6.608	5.987	5.591	5.117	4.965	4.844	4./4/	4.600	4.543	4.451	4.414	4.381	4.325	4.301	4.279	4.260	4.242	4.210	4.196	4 171	4.121	4.085	4.034	4.016	4.001	3.960	3.947	3.927	3.920	3.904	3.865	3.841 3.841	D	l -	8		
Table A.7	Degrees of Freedom, *		7	~ 7	r vo	9	r ×	• •	10	= 5	13	14	51 7	11	81	6I V	51	22	ສ ສ 6		8 0	27	88 88	£3 (?	8 8	\$;	2 2	55	8 8	2 8	8	<u>8</u> 9	120	20 <u>20</u>	8 8	9 <u>0</u> 8		@			

Important properties of T^2

- 1. Sometimes we refer to the subscripts for $T_{p,\nu}^2$ distribution as "dimension" and "df" (e.g., $T_{\dim,df}^2$)
- 2. Must have n > p
 - Otherwise **S** is singular and T^2 cannot be computed.
- 3. Degrees of freedom ν for T^2 is same as for analogous univariate *t*-test:
 - $\nu = n 1$ for one-sample test
 - $\nu = n_1 + n_2 2$ for two-sample test
- 4. Alternative hypothesis is 2-sided (no such thing as " $H_1 : \mu > \mu_0$ ")
 - Critical region is one-tailed (reject for large values) since test statistic is *squared* distance

5.
$$\frac{\nu - p + 1}{\nu p} T_{p,\nu}^2 \stackrel{q}{\equiv} F_{p,\nu - p + 1}$$

[Note: " $\stackrel{q}{\equiv}$ " is shorthand for the equivalence of the quantiles of two dist'ns]

• So, *p*-value for T^2 test is

$$p\text{-value} = \Pr\left\{F_{p,\nu-p+1} > \frac{\nu-p+1}{\nu p}T^2\right\}$$

• Critical value for T^2 test is

$$T_{\alpha,p,\nu}^{2} = \frac{\nu p}{\nu - p + 1} F_{\alpha,p,\nu - p + 1} \left(\text{or } \frac{(n-1)p}{n-p} F_{\alpha,p,n-p} \text{ when } \nu = n - 1 \right)$$

6. T^2 invariant under transformations of the form $\ddot{\mathbf{x}}_{p \times 1} = \underset{p \times p}{\mathbf{C}} \underset{p \times 1}{\mathbf{x}} + \mathbf{d}$, where **C** is nonsingular

- 7. T^2 is the likelihood ratio test (LRT) of $H_0: \boldsymbol{\mu} = \boldsymbol{\mu}_0$
 - Under H_0 the likelihood is

$$L(\boldsymbol{\mu}_{0}, \boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{np/2} |\boldsymbol{\Sigma}|^{n/2}} \exp\left\{-\frac{1}{2} \sum_{i=1}^{n} (\mathbf{x}_{i} - \boldsymbol{\mu}_{0})' \boldsymbol{\Sigma}^{-1} (\mathbf{x}_{i} - \boldsymbol{\mu}_{0})\right\}$$
$$= \frac{1}{(2\pi)^{np/2} |\boldsymbol{\Sigma}|^{n/2}} \exp\left\{-\frac{1}{2} \operatorname{tr}\left[\boldsymbol{\Sigma}^{-1} (\sum_{i=1}^{n} (\mathbf{x}_{i} - \boldsymbol{\mu}_{0}) (\mathbf{x}_{i} - \boldsymbol{\mu}_{0})')\right]\right\}$$

Using Result 4.10 (again), we obtain

$$\sum_{\boldsymbol{\Sigma}}^{\max} L(\boldsymbol{\mu}_0, \boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{\frac{np}{2}}} |\hat{\boldsymbol{\Sigma}}_0|^{\frac{n}{2}} \exp\left\{\frac{-np}{2}\right\}$$

where $\hat{\boldsymbol{\Sigma}}_0 = \frac{1}{n} \sum_{i=1}^n (\mathbf{x}_i - \boldsymbol{\mu}_0) (\mathbf{x}_i - \boldsymbol{\mu}_0)'$

• Recall

$$\max_{\boldsymbol{\mu}, \boldsymbol{\Sigma}} L(\boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{\frac{np}{2}} |\hat{\boldsymbol{\Sigma}}|^{\frac{n}{2}}} \exp\left\{\frac{-np}{2}\right\}$$

where $\hat{\boldsymbol{\Sigma}} = \frac{1}{n} \sum_{i=1}^{n} (\mathbf{x}_i - \bar{\mathbf{x}}) (\mathbf{x}_i - \bar{\mathbf{x}})'$

• Likelihood Ratio:

$$\lambda = \frac{\sum_{\boldsymbol{\Sigma}}^{\max} L(\boldsymbol{\mu}_0, \boldsymbol{\Sigma})}{(\boldsymbol{\mu}, \boldsymbol{\Sigma}) L(\boldsymbol{\mu}, \boldsymbol{\Sigma})} = \left(\frac{|\hat{\boldsymbol{\Sigma}}|}{|\hat{\boldsymbol{\Sigma}}_0|}\right)^{\frac{n}{2}} < c_{\alpha}$$
$$\Lambda = \lambda^{\frac{2}{n}} = \frac{|\hat{\boldsymbol{\Sigma}}|}{|\hat{\boldsymbol{\Sigma}}_0|} = \frac{1}{1 + \frac{1}{n-1}T^2}$$

"Wilks' Lambda" is rejected for small Λ or large T^2 * $T^2 = (n-1)\frac{|\hat{\Sigma}_0|}{|\hat{\Sigma}|} - (n-1)$ * $-2\ln\lambda \sim \chi^2_{\nu-\nu_0}$ where $\nu = \#$ of unrestricted parameters and $\nu_0 = \#$ of parameters under H_0 [ex] Turnips

A.ii. Confidence Regions

• Confidence region $R(\mathbf{X})$:

Set of possible values of $\boldsymbol{\theta}$ in $\boldsymbol{\Theta}$ based on \mathbf{X}

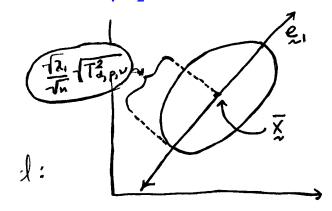
R(X) is 100(1 − α)% C.R. if, before the sample is selected
 Pr{R(X) will cover the true θ} = 1 − α.

• C.R. for
$$\boldsymbol{\mu}$$
 [100(1 - α)%]
{all $\boldsymbol{\mu} \ni \underbrace{n(\bar{\mathbf{x}} - \boldsymbol{\mu})'S^{-1}(\bar{\mathbf{x}} - \boldsymbol{\mu})}_{\text{squared mult. distance from } \bar{\mathbf{x}}} \leq T^2_{\alpha,p,\nu}$ }_{or {all $\boldsymbol{\mu} \ni n(\bar{\mathbf{x}} - \boldsymbol{\mu})'S^{-1}(\bar{\mathbf{x}} - \boldsymbol{\mu}) \leq \frac{\nu p}{\nu - p + 1}F_{\alpha,p,\nu - p + 1}$ }

• Axes of the ellipsoid (based on eigenvalues $\lambda_1, \ldots, \lambda_p$ and eigenvectors $\mathbf{e}_1, \ldots, \mathbf{e}_p$ of \mathbf{S}):

$$\frac{\pm\sqrt{\lambda_i}}{\sqrt{n}}\sqrt{T^2_{\alpha,p,\nu}}$$
 along \mathbf{e}_i

Elongation of ellipsoid: $\frac{\sqrt{\lambda_1}}{\sqrt{\lambda_2}}$



Interest in C.I.'s for individual components of \mathbf{x} or linear combination $\mathbf{a}'\mathbf{x}$.

• Define
$$z = \mathbf{a}' \mathbf{x}$$

$$z \sim N_1(\mathbf{a}'\boldsymbol{\mu}, \mathbf{a}'\boldsymbol{\Sigma}\mathbf{a}) = N_1(\mu_z, \sigma_z^2)$$

• Sample statistics:

$$\bar{z} = \mathbf{a}' \bar{\mathbf{x}}$$

$$s_z^2 = \mathbf{a}' \mathbf{S} \mathbf{a}$$

Note: $\mathbf{a}_1 = [0, 1, 0, \dots, 0]$ will yield $\mathbf{a}'_1 \bar{\mathbf{x}} = \bar{x}_2$ and $\mathbf{a}_2 = [1, -1, 0, \dots, 0]$ implies that $\mathbf{a}'_2 \bar{\mathbf{x}} = \bar{x}_1 - \bar{x}_2$, etc.

• $100(1-\alpha)\%$ C.I. for μ_z is

$$\mathbf{a}'\mathbf{\bar{x}} \pm t_{\frac{\alpha}{2},n-1}\sqrt{\frac{\mathbf{a}'\mathbf{S}\mathbf{a}}{n}}$$
 "t-interval"

– Experimentwise Type I error rate (EER)

Pr {at least one C.I. "wrong"} = $1 - Pr\{\text{no C.I.'s are wrong}\}$ = $1 - (1 - \alpha)^p$ assuming independence of C.I.'s

ex
$$\alpha = .05$$
: EER for $p = 10$ is $1 - (.95)^{10} \approx .40$

• Rewrite t-interval as

$$\left\{ \text{all } \mathbf{a}'\boldsymbol{\mu} \ni n \frac{(\mathbf{a}'(\bar{\mathbf{x}} - \boldsymbol{\mu}))^2}{\mathbf{a}' \mathbf{S} \mathbf{a}} \le t_{n-1}^2 \right\}$$

Is there a bound c^2 which can replace t_{n-1}^2 and defines a C.R. that simultaneously contains $\mathbf{a}'\boldsymbol{\mu}$ for all \mathbf{a} ??

• Preliminary result (2–50, JW)

```
For \underset{p \times p}{\mathbf{B}} p.d. and \mathbf{x} \neq \mathbf{0}
```

$$\max_{\mathbf{x}\neq 0} \frac{(\mathbf{x}'\mathbf{d})^2}{\mathbf{x}'\mathbf{B}\mathbf{x}} = \mathbf{d}'\mathbf{B}^{-1}\mathbf{d}$$

with maximum attained when $\mathbf{x} = c\mathbf{B}^{-1}\mathbf{d}, c \neq 0$

• So,
$$\max_{\mathbf{a}\neq 0} \frac{\left(\mathbf{a}'(\bar{\mathbf{x}}-\boldsymbol{\mu})\right)}{\mathbf{a}'\mathbf{S}\mathbf{a}} = n\left(\bar{\mathbf{x}}-\boldsymbol{\mu}\right)'\mathbf{S}^{-1}\left(\bar{\mathbf{x}}-\boldsymbol{\mu}\right) = T^2$$

with maximum at

$$\mathbf{a} = c \mathbf{S}^{-1} (\bar{\mathbf{x}} - \boldsymbol{\mu}), \quad c \neq 0$$
$$=$$
"discriminant function"

 \implies Simultaneously for all **a**, the interval

$$\mathbf{a}'\mathbf{\bar{x}} \pm \sqrt{T^2_{\alpha,p,\nu}}\sqrt{\frac{\mathbf{a}'\mathbf{S}\mathbf{a}}{n}}$$

or

$$\mathbf{a}'\mathbf{\bar{x}} \pm \sqrt{\frac{\nu p}{\nu - p + 1}} F_{\alpha, p, \nu - p + 1} \frac{\mathbf{a}'\mathbf{Sa}}{n} \qquad \xleftarrow{} \mathbb{T}^2 \text{ interval}''$$

or when
$$\nu = n - 1$$

$$\mathbf{a}'\mathbf{\bar{x}} \pm \sqrt{\frac{(n-1)p}{n(n-p)}}F_{\alpha,p,n-p}\mathbf{a}'\mathbf{Sa}$$

will contain $\mathbf{a}'\boldsymbol{\mu}$ with probability $1 - \alpha$.

(in More conservative (wider) than t-interval

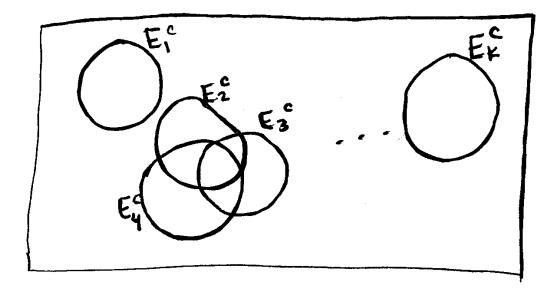
- \odot Preserve EER $\leq \alpha$
- ⊙ Allows "data-snooping"

If we're willing to specify a few linear combinations $\mathbf{a}_1, \ldots, \mathbf{a}_k$ before collecting the data, we might consider using intervals based on the Bonferroni inequality which are narrower than T^2 intervals but still protect EER for a finite set of l.c.'s.

Given C.I.'s for k l.c.'s $\mathbf{a}'_1 \boldsymbol{\mu}, \ldots, \mathbf{a}'_k \boldsymbol{\mu},$

- E_i : event that i^{th} interval contains $\mathbf{a}'_i \boldsymbol{\mu}$
- $P\{E_i^c\} = \alpha_i$

$$\Pr\{\text{all } E_i\} = 1 - \Pr\{\text{at least one } E_i^c\} \\ = 1 - \Pr\{E_1^c \cup E_2^c \cup \dots \cup E_k^c\} \\ \ge 1 - \sum_{i=1}^k \Pr\{E_i^c\} \\ = 1 - \Sigma \alpha_i$$



• Usually, specify $\alpha_i = \frac{\alpha}{k}$

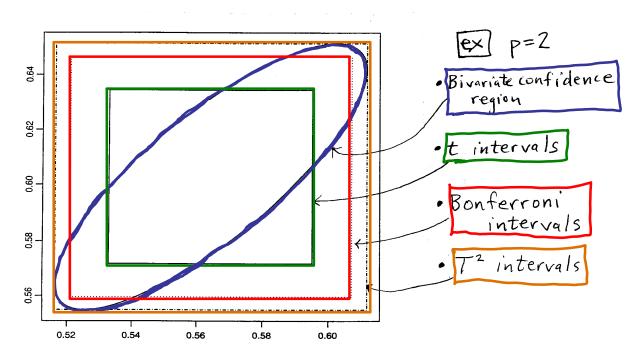
So,

$$\mathbf{a}'\mathbf{\bar{x}} \pm t_{\frac{\alpha}{2k},n-1}\sqrt{\frac{\mathbf{a}'\mathbf{S}\mathbf{a}}{n}}$$

"<u>Bonferroni Interval</u>"

Critical values for 95% C.I.'s for μ_1, \ldots, μ_p

			P=	- 5	P=12							
-	n	t 4/2	typ	$\sqrt{T_{e}^2}$	toyze	$\sqrt{T_{\alpha}^2}$						
	15	2.14	2.98	4.83	3.42	22.13						
	25	2.06	2.80	4.03	3.17	7.59						
	40	2.02	2.71	3.72	3.04	5.95						
	100	1.98	2.63	3.47	2.93	5.02						
	200	1.97	2.60	3.4D	2.90	4.79						



Notes:

• Often useful to examine the <u>discriminant function</u> $\mathbf{a} = \mathbf{S}^{-1}(\bar{\mathbf{x}} - \boldsymbol{\mu})$ in

$$\max_{\mathbf{a}\neq 0} \frac{n(\mathbf{a}'(\bar{\mathbf{x}}-\boldsymbol{\mu}))^2}{\mathbf{a}'\mathbf{S}\mathbf{a}} = T^2$$

- a indicates the relative contribution of the x's to the separation of the data from μ_0
 - Comparisons of a_1, \ldots, a_p only informative when x's are commensurate (i.e., measured on the same scale with comparable variances)

- If x's are not commensurate, consider coefficients a_1^*, \ldots, a_p^* that are applicable to standard variables.
- Discriminant function in terms of standardized variables

$$z = a_1^* \frac{x_1 - \bar{x}_1}{s_1} + \dots + a_p^* \frac{x_p - \bar{x}_p}{s_p}$$

instead of

$$z = a_1 x_1 + \dots + a_p x_p$$

OR

ex

$$\mathbf{a}^* = \mathbf{D}^{\frac{1}{2}} \mathbf{a} \qquad \text{where } \mathbf{D} = \begin{bmatrix} s_{11} & \mathbf{0} \\ & \ddots \\ \mathbf{0} & s_{pp} \end{bmatrix}$$
Turnips

III.B. Comparison of Several Mean VectorsIII.B.i. Paired Observations

Let \mathbf{x}_{1i} and \mathbf{x}_{2i} be 2 *p*-variate responses for observation i (i = 1, ..., n)[ex] LaVerl's SAT pre-class test grades and post-class grades Pre-class grades:

$$\mathbf{x}_{1i} = (\text{Quant} = 640, \text{Analyt} = 610, \text{Verbal} = 490)$$

Post-class grades:

$$\mathbf{x}_{2i} = (\text{Quant} = 680, \text{Analyt} = 620, \text{Verbal} = 560)$$

1. Calculate $\mathbf{d}_i = \mathbf{x}_{1i} - \mathbf{x}_{2i}$

2. Calculate

$$\bar{\mathbf{d}} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{d}_i$$

and

$$\mathbf{S}_d = \frac{1}{n-1} \sum_{i=1}^n (\mathbf{d}_i - \bar{\mathbf{d}}) (\mathbf{d}_i - \bar{\mathbf{d}})'$$

3.
$$T^2 = n \bar{\mathbf{d}}' \mathbf{S}_d^{-1} \bar{\mathbf{d}} \sim T^2_{p,\underbrace{n-1}_{\nu}} \stackrel{q}{\equiv} \frac{(n-1)p}{n-p} F_{p,\underbrace{n-p}_{\nu-p+1}}$$

[Note: " $\stackrel{q}{\equiv}$ " is shorthand for the equivalence of the quantiles of two dist'ns]

 \star Same follow-up analyses as in one-sample T^2 test/intervals apply here

- Confidence regions/intervals
- Discriminant functions

Alternatively, think of each observation

$$\mathbf{x}_{i}_{2p \times 1} = \begin{bmatrix} \mathbf{x}_{1i} \\ \mathbf{x}_{2i} \end{bmatrix} \leftarrow \text{pre-tests}$$
$$\mathbf{x}_{2p \times 1} = \begin{bmatrix} \mathbf{x}_{1} \\ \mathbf{x}_{2i} \end{bmatrix}$$
$$\mathbf{x}_{2p \times 2p} = \begin{bmatrix} \mathbf{x}_{1} \\ \mathbf{x}_{2} \end{bmatrix}$$
$$\mathbf{S}_{2p \times 2p} = \begin{bmatrix} \mathbf{S}_{11} & \mathbf{S}_{12} \\ \mathbf{S}_{21} & \mathbf{S}_{22} \end{bmatrix}$$

Interest is in $\mathbf{C}\mathbf{x}_i$, where

$$\mathbf{C}_{p \times 2p} = \begin{bmatrix} 1 & \mathbf{0} & -1 & \mathbf{0} \\ 1 & & -1 & \\ & \ddots & & \ddots \\ \mathbf{0} & 1 & \mathbf{0} & -1 \end{bmatrix}$$

Note

 $\begin{aligned} \mathbf{d}_{i} &= \mathbf{C}\mathbf{x}_{i} \\ \bar{\mathbf{d}} &= \mathbf{C}\bar{\mathbf{x}} \\ \mathbf{S}_{d} &= \mathbf{C}\mathbf{S}\mathbf{C}' \\ \text{and } T^{2} &= n\bar{\mathbf{x}}'\mathbf{C}'(\mathbf{C}\mathbf{S}\mathbf{C}')^{-1}\mathbf{C}\bar{\mathbf{x}} \sim T_{p,n-1}^{2} \\ &= \frac{q}{(n-1)p} \frac{(n-1)p}{(n-1-p+1)}F_{p,n-1-p+1} \\ &= \frac{q}{\equiv} \frac{(n-1)p}{n-p}F_{p,n-p} \end{aligned}$

An extension to a comparison of p treatments given to each subject over time

$$\mathbf{x}_{i} = \begin{bmatrix} x_{i1} \\ x_{i2} \\ \vdots \\ x_{ip} \end{bmatrix} \leftarrow \text{ evaluation after day 1 dosage} \qquad i = 1, \dots, n$$
$$i = 1, \dots, n$$

Interest may lie in comparisons of treatment means

$$\mathbf{C}_{(p-1)\times p} \boldsymbol{\mu} = \begin{bmatrix} -1 & 1 & 0 & \cdots & 0 & 0 \\ 0 & -1 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} \mu_1 \\ \mu_2 \\ \vdots \\ \vdots \\ \mu_p \end{bmatrix} = \begin{bmatrix} \mu_2 - \mu_1 \\ \mu_3 - \mu_2 \\ \vdots \\ \mu_p - \mu_{p-1} \end{bmatrix}$$

$$T^{2} = n(\mathbf{C}\bar{\mathbf{x}})'(\mathbf{C}\mathbf{S}\mathbf{C}')^{-1}\mathbf{C}\bar{\mathbf{x}} \sim T^{2}_{p-1,n-1}$$

$$\stackrel{q}{\equiv} \frac{(n-1)(p-1)}{(n-1-(p-1)+1)}F_{(p-1),n-1-(p-1)+1}$$

$$\stackrel{q}{\equiv} \frac{(n-1)(p-1)}{n-p+1}F_{p-1,n-p+1}$$

e.g., if comparing 3 days, we might use

$$\mathbf{C}_{2\times3} = \begin{bmatrix} -1 & 0 & 1 \\ 1 & -2 & 1 \end{bmatrix} \leftarrow \text{linear increase/decrease in response} \\ \leftarrow \text{quadratic effect on response}$$

e.g., if comparing 4 days, we might use

$$\mathbf{C}_{3\times4} = \begin{bmatrix} -3 & -1 & 1 & 3\\ 1 & -1 & -1 & 1\\ 1 & -3 & 3 & -1 \end{bmatrix} \leftarrow \text{linear}$$
$$\leftarrow \text{quadradic}$$
$$\leftarrow \text{cubic}$$

B.ii. Two-Sample Comparisons

Interest in $\mu_1 - \mu_2$ (difference in two population means). Assumptions:

- $\mathbf{x}_{11}, \mathbf{x}_{12}, \ldots, \mathbf{x}_{1n_1}$ is a r.s. from $N_p(\boldsymbol{\mu}_1, \boldsymbol{\Sigma})$
- $\mathbf{x}_{21}, \mathbf{x}_{22}, \dots, \mathbf{x}_{2n_2}$ is a r.s. from $N_p(\boldsymbol{\mu}_2, \boldsymbol{\Sigma})$

- Note that $\Sigma_1 = \Sigma_2 = \Sigma$

• The two samples are independent

In practice, we can relax these assumptions somewhat for large n.

Let $\bar{\mathbf{x}}_{i} = \frac{1}{n_{i}} \sum_{j=1}^{n_{i}} \mathbf{x}_{ij}, \quad i = 1, 2$ $\mathbf{S}_{i} = \frac{1}{n_{i} - 1} \sum_{j=1}^{n_{i}} (\mathbf{x}_{ij} - \bar{\mathbf{x}}_{i}) (\mathbf{x}_{ij} - \bar{\mathbf{x}}_{i})', \quad i = 1, 2$

Since
$$(n_1 - 1)\mathbf{S}_1 \sim W_p(n_1 - 1, \mathbf{\Sigma})$$

and $(n_2 - 1)\mathbf{S}_2 \sim W_p(n_2 - 1, \mathbf{\Sigma})$
 $\underbrace{(n_1 - 1)\mathbf{S}_1 + (n_2 - 1)\mathbf{S}_2}_{=(n_1 + n_2 - 2)\mathbf{S}_{p\ell}} \sim W_p(n_1 + n_2 - 2, \mathbf{\Sigma})$
 $\Longrightarrow E\{\mathbf{S}_{p\ell}\} = \mathbf{\Sigma}$

Since the two samples are independent

$$(\bar{\mathbf{x}}_1 - \bar{\mathbf{x}}_2) \sim N_p \left(\boldsymbol{\mu}_1 - \boldsymbol{\mu}_2, \frac{1}{n_1} \boldsymbol{\Sigma} + \frac{1}{n_2} \boldsymbol{\Sigma} \right)$$

and

$$T^{2} = [\bar{\mathbf{x}}_{1} - \bar{\mathbf{x}}_{2} - (\boldsymbol{\mu}_{1} - \boldsymbol{\mu}_{2})]' \left[\left(\frac{1}{n_{1}} + \frac{1}{n_{2}} \right) \mathbf{S}_{p\ell} \right]^{-1} [\bar{\mathbf{x}}_{1} - \bar{\mathbf{x}}_{2} - (\boldsymbol{\mu}_{1} - \boldsymbol{\mu}_{2})]$$

$$\sim T^{2}_{p,\nu} = T^{2}_{p,n_{1}+n_{2}-2}$$

$$\stackrel{q}{=} \frac{(n_{1} + n_{2} - 2)p}{(n_{1} + n_{2} - 2) - p + 1} F_{p,(n_{1}+n_{2}-2)-p+1}$$

100(1 - α)% C.R. for $\mu_1 - \mu_2 = \delta$:

$$\left\{\text{all }\boldsymbol{\delta}\ni T^2\leq T^2_{\alpha,p,\nu}\right\} \quad \nu=n_1+n_2-2$$

where T^2 is the squared mult. distance between $\bar{\mathbf{x}}_1$ and $\bar{\mathbf{x}}_2$

or
$$\left\{ \text{all } \boldsymbol{\delta} \ni T^2 \le \frac{(n_1 + n_2 - 2)p}{(n_1 + n_2 - 2) - p + 1} F_{\alpha, p, (n_1 + n_2 - 2) - p + 1} \right\}$$

Follow-up analyses

• "*t*-interval":

$$\mathbf{a}'\bar{\mathbf{x}}_1 - \mathbf{a}'\bar{\mathbf{x}}_2 \pm t_{\frac{\alpha}{2},n_1+n_2-2}\sqrt{\left(\frac{1}{n_1} + \frac{1}{n_2}\right)\mathbf{a}'\mathbf{S}_{p\ell}\mathbf{a}}$$

• "Bonferroni interval":

$$\mathbf{a}'\bar{\mathbf{x}}_1 - \mathbf{a}'\bar{\mathbf{x}}_2 \pm t_{\frac{\alpha}{2k}, n_1+n_2-2} \sqrt{\left(\frac{1}{n_1} + \frac{1}{n_2}\right)\mathbf{a}'\mathbf{S}_{p\ell}\mathbf{a}}$$

- k is # of contrasts of interest [ex] want intervals for each of p variables Then, $[\mathbf{a}_1, \dots, \mathbf{a}_p] = \mathbf{I}_p$ and k = p
- " T^2 -interval"

$$\mathbf{a}' \bar{\mathbf{x}}_1 - \mathbf{a}' \bar{\mathbf{x}}_2 \pm \sqrt{T_{\alpha, p, \nu}^2} \sqrt{\left(\frac{1}{n_1} + \frac{1}{n_2}\right) \mathbf{a}' \mathbf{S}_{p\ell} \mathbf{a}}$$

where $T_{\alpha,p,\nu}^2 \equiv \frac{(n_1+n_2-2)p}{(n_1+n_2-2)-p+1} F_{\alpha,p,(n_1+n_2-2)-p+1}$

• Examine discriminant function

$$\mathbf{a} = \mathbf{S}_{p\ell}^{-1}(\bar{\mathbf{x}}_1 - \bar{\mathbf{x}}_2)$$

for indication of contribution of the variables to separation of the groups

 \rightarrow If x's are not commensurate consider standardized coefficients

$$\mathbf{a}^{\star} = \mathbf{D}_{p\ell}^{rac{1}{2}}\mathbf{a}$$

where

$$\mathbf{D}_{p\ell} = \operatorname{diag}\{\mathbf{S}_{p\ell}\} = \begin{bmatrix} s_{11,p\ell} & \mathbf{0} \\ & \ddots & \\ \mathbf{0} & s_{pp,p\ell} \end{bmatrix}$$

ex Duchenne muscular dystrophy

- Test
$$H_0: \mu_1 = \mu_2$$
 using $x_3, x_4, x_5, \& x_6$

- * Individual tests using $t_{\alpha/2}, t_{\alpha/2p}, \sqrt{T^2_{\alpha,p,\nu}}$ as critical values
- * Examine discriminant function coeff.
 - \cdot Standardized coefficients

Testing $\boldsymbol{\mu}_1 = \boldsymbol{\mu}_2$ when $\boldsymbol{\Sigma}_1 \neq \boldsymbol{\Sigma}_2$

Univariate case ("Behrens-Fisher Problem"):

$$t^* = \frac{\bar{\mathbf{x}}_1 - \bar{\mathbf{x}}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}} \overset{\text{approx}}{\sim} t_\nu$$

where

$$\nu = \frac{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)^2}{\left[\frac{\left(\frac{s_1^2}{n_1}\right)^2}{n_1 + 1} + \frac{\left(\frac{s_2^2}{n_2}\right)^2}{n_2 + 1}\right]} \quad \leftarrow \text{(Welch, 1937, 1947)}$$

• Hsu (1938) and Scheffe' (1959) argue that significance level for usual *t*-test is preserved when $n_1 = n_2$

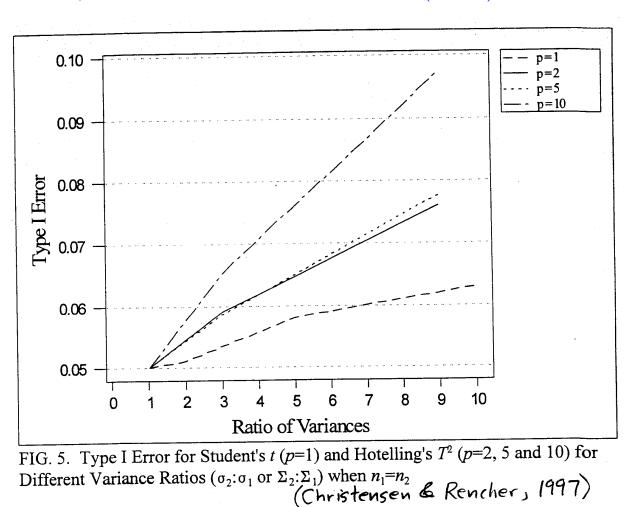
Multivariate case:

$$T^{*^{2}} = (\bar{\mathbf{x}}_{1} - \bar{\mathbf{x}}_{2})' \left[\frac{\mathbf{S}_{1}}{n_{1}} + \frac{\mathbf{S}_{2}}{n_{2}}\right]^{-1} (\bar{\mathbf{x}}_{1} - \bar{\mathbf{x}}_{2}) \to \chi_{p}^{2}$$

as
$$(n_1 - p) \to \infty, \ (n_2 - p) \to \infty$$

- Significance level preserved for usual T^2 test when $n_1 = n_2$ and n_1 and n_2 are "very large" (Ito and Schull, 1964)
- "If sample sizes are equal the significance level [of usual T^2 test] is not affected" (Carter, Khatri, and Srivastava, 1979)
- ? But do these properties hold with small to moderate sample sizes ?

Simulation Study in Christensen & Rencher (1997)



For matrices of form $\Sigma_2 = k\Sigma_1$, equality of sample sizes $(n_1 = n_2)$ is less able to protect Type I error rate as p increases

• (Study considered small to moderate $n_1, n_2 \in (2p, 10p)$)

For multivariate Behrens-Fisher problem, consider

$$T^{*^{2}} = (\bar{\mathbf{x}}_{1} - \bar{\mathbf{x}}_{2})' \mathbf{S}_{e}^{-1} (\bar{\mathbf{x}}_{1} - \bar{\mathbf{x}}_{2})$$

as a statistic, where

$$\mathbf{S}_e = \frac{\mathbf{S}_1}{n_1} + \frac{\mathbf{S}_2}{n_2}$$

There are several tests for μ₁ = μ₂ when Σ₁ ≠ Σ₂, and many of these use

$$T^{*^2} \stackrel{\text{approx}}{\sim} T^2_{p,\nu^*}$$

For example:

- Yao (1965) test uses

$$\frac{1}{\nu^*} = \frac{1}{(T^{*^2})^2} \sum_{i=1}^2 \frac{1}{n_i - 1} \left[(\bar{\mathbf{x}}_1 - \bar{\mathbf{x}}_2)' \mathbf{S}_e^{-1} \frac{\mathbf{S}_i}{n_i} \mathbf{S}_e^{-1} (\bar{\mathbf{x}}_1 - \bar{\mathbf{x}}_2) \right]^2$$

- * Note: this is a multivariate extension of Welch's approach to univariate problem
- Nel and Van der Merwe (1986) test uses

$$\nu^* = \frac{\operatorname{tr}\left\{\mathbf{S}_e^2\right\} + \left(\operatorname{tr}\left\{\mathbf{S}_e\right\}\right)^2}{\sum_{i=1}^2 \frac{1}{n_i - 1} \left[\operatorname{tr}\left\{\left(\frac{\mathbf{S}_i}{n_i}\right)^2\right\} + \left(\operatorname{tr}\left\{\frac{\mathbf{S}_i}{n_i}\right\}\right)^2\right]}$$

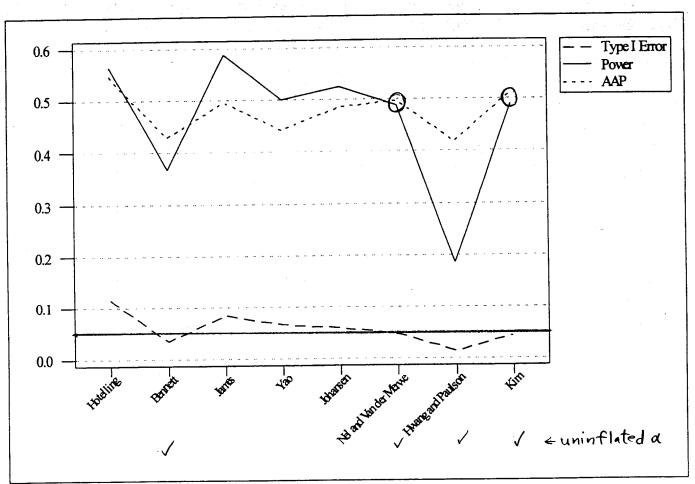


FIG. 1. Average Type I Error, Power and Alpha-adjusted Power (AAP)

(Christensen & Rencher, 1997)

 Simulation study: Nel and Van der Merwe (1986) and Kim (1992) have highest power among tests with uninflated Type I error rate
 Muscular Dystrophy Tests for additional information

Let
$$\mathbf{x}_{1i} = \begin{pmatrix} \mathbf{y}_{1i} \\ \mathbf{z}_{1i} \end{pmatrix} \leftarrow p \times 1$$

 $\leftarrow q \times 1$, $i = 1, ..., n_1$ be a r.s. from $N_{p+q}(\boldsymbol{\mu}_1, \boldsymbol{\Sigma})$
and $\mathbf{x}_{2i} = \begin{pmatrix} \mathbf{y}_{2i} \\ \mathbf{z}_{2i} \end{pmatrix} \leftarrow p \times 1$
 $\leftarrow q \times 1$, $i = 1, ..., n_2$ be a r.s. from $N_{p+q}(\boldsymbol{\mu}_2, \boldsymbol{\Sigma})$

- Start with **y** measurements
 - Will the $q \times 1$ subvector \mathbf{z} measured in addition to \mathbf{y} significantly increase the separation of the two samples (or is \mathbf{z} redundant in presence of \mathbf{y} ?)

• Sample means:
$$\bar{\mathbf{x}}_1 = \begin{pmatrix} \bar{\mathbf{y}}_1 \\ \bar{\mathbf{z}}_1 \end{pmatrix}$$
 and $\bar{\mathbf{x}}_2 = \begin{pmatrix} \bar{\mathbf{y}}_2 \\ \bar{\mathbf{z}}_2 \end{pmatrix}$
Common sample covariance matrix: $\mathbf{S}_{p\ell} = \begin{bmatrix} \mathbf{S}_{yy} & \mathbf{S}_{yz} \\ \mathbf{S}_{zy} & \mathbf{S}_{zz} \end{bmatrix}$

• If \mathbf{y} and \mathbf{z} are independent:

$$T_{p+q}^2 = T_p^2 + T_q^2$$

• If not independent: Compare T_{p+q}^2 with T_p^2

$$T_{p+q}^{2} = \frac{n_{1}n_{2}}{n_{1}+n_{2}} \left(\bar{\mathbf{x}}_{1} - \bar{\mathbf{x}}_{2}\right)' \mathbf{S}_{p\ell}^{-1} \left(\bar{\mathbf{x}}_{1} - \bar{\mathbf{x}}_{2}\right)$$

$$T_p^2 = \frac{n_1 n_2}{n_1 + n_2} \left(\bar{\mathbf{y}}_1 - \bar{\mathbf{y}}_2 \right)' \mathbf{S}_{yy}^{-1} \left(\bar{\mathbf{y}}_1 - \bar{\mathbf{y}}_2 \right)$$

Then, we can show that

$$T_{\text{add}}^2 = (\nu - p) \frac{T_{p+q}^2 - T_p^2}{\nu + T_p^2} \sim T_{q,\nu-p}^2$$
$$\stackrel{q}{=} \frac{(\nu - p)q}{\nu - p - q + 1} F_{q,\nu-p-q+1}$$

or

$$F_{\text{add}} = \left(\frac{\nu - p - q + 1}{q}\right) \frac{T_{p+q}^2 - T_p^2}{\nu + T_p^2} \sim F_{q,\nu-p-q+1}$$

where $\nu = n_1 + n_2 - 2$

• If just checking the addition of one variable:

$$T_{\rm add}^2 \sim F_{1,\nu-p}$$

ex Duchenne muscular dystrophy

- $-x_3$ and x_4 are relatively inexpensive to measure compared to x_5 and x_6 . Are x_5 and x_6 important above and beyond x_3 and x_4
- $-x_3, x_4, x_5, x_6$ may depend on age and season. Are x_1 = age and x_2 = season important?

B.iii. MANOVA (one-way)

• Comparing means from g groups

Sample from population 1: $\mathbf{x}_{11}, \mathbf{x}_{12}, \dots, \mathbf{x}_{1n_1}$ Sample from population 2: $\mathbf{x}_{21}, \mathbf{x}_{22}, \dots, \mathbf{x}_{2n_2}$ independent i samples

Sample from population $g: \mathbf{x}_{g1}, \mathbf{x}_{g2}, \ldots, \mathbf{x}_{gn_g}$

 $\mathbf{x}_{\ell j} \sim N(\boldsymbol{\mu}_{\ell}, \boldsymbol{\Sigma}) \qquad \leftarrow \boldsymbol{\Sigma}$ is the common covariance matrix

• Instead of testing

 $H_0: \mu_1 = \mu_2 = \cdots = \mu_g$ vs. H_1 : at least two μ 's are unequal

we usually reparameterize

 $\mu_{\ell} = \mu + \tau_{\ell} \quad \leftarrow \text{ treatment effect}$

Thus $\mathbf{x}_{\ell j} \sim N(\boldsymbol{\mu} + \boldsymbol{\tau}_{\ell}, \boldsymbol{\Sigma})$ and

$$H_0: \boldsymbol{\tau}_1 = \boldsymbol{\tau}_2 = \cdots = \boldsymbol{\tau}_g$$

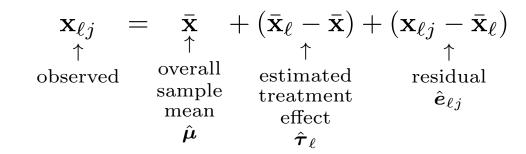
• Our model:

$$\mathbf{x}_{\ell j} = \boldsymbol{\mu} + \boldsymbol{\tau}_{\ell} + \mathbf{e}_{\ell j}, \ \ell = 1, \dots, g, \ j = 1, \dots, n_{\ell}$$

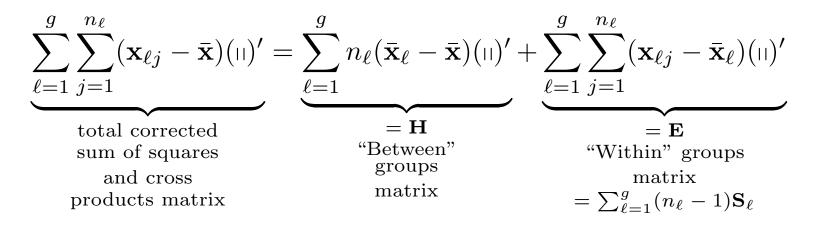
- For uniqueness (identifiability), we impose the constraint

$$\sum_{\ell=1}^g n_\ell \boldsymbol{\tau}_\ell = \mathbf{0}$$

• Decomposition of sample:



• Multivariate analog of total (corrected) sum of squares is



Notes:

- Assuming no linear dependencies, $\operatorname{rank}{\mathbf{H}} = \min(p, \nu_H)$
- $-\mathbf{S}_{\ell}$ is the covariance matrix for the ℓ^{th} sample. So,

$$E\left\{\frac{1}{\left(\sum_{\ell=1}^{g} n_{\ell}\right) - g}\mathbf{E}\right\} = \mathbf{\Sigma}$$

where $\operatorname{rank}{\mathbf{E}} = \min(p, \nu_E)$

$\underline{MANOVA TABLE}$ (one-way)						
Source	<u>SS Matrix</u>	<u>d.f.</u>				
Treatment	н	$\nu_H = g - 1$				
Error	${f E}$	$\nu_E = \left(\sum_{\ell=1}^g n_\ell\right) - g$				
Total (corrected)	$\mathbf{H} + \mathbf{E}$	$\left(\sum_{\ell=1}^{g} n_{\ell}\right) - 1$				

<u>Wilks' Λ </u>

The likelihood ratio test of $H_0: \mu_1 = \mu_2 = \cdots = \mu_g$ rejects H_0 when

$$\Lambda = rac{|\mathbf{E}|}{|\mathbf{E} + \mathbf{H}|} \le \Lambda_{lpha, p,
u_H,
u_E}$$

- Note: Reject for small values of Λ . As in univariate anova *F*-test, we "accept" when total SS (**E** + **H**) is dominated by error (**E**).
- Note: We sometimes refer to the subscripts of the Λ_{p,ν_H,ν_E} distribution as "dimension," "numerator df," and "denominator df" (e.g., $\Lambda_{\dim,df_{num},df_{den}}$)

Properties of Wilk's Λ :

- 1. For statistic to be obtained, we need $\nu_E \ge p$.
- 2. Degrees of freedom ν_H and ν_E are the same as in analogous univariate case; e.g., one-way model: $\nu_H = g - 1$ and $\nu_E = \sum_{\ell=1}^g n_\ell - g$
- 3. Let $\lambda_1, \ldots, \lambda_s$ be the *s* non-zero eigenvalues of $\mathbf{E}^{-1}\mathbf{H}$, where $s = \min(p, \nu_H)$. Then $\Lambda = \prod_{i=1}^s \frac{1}{1+\lambda_i}$.
- 4. Critical value $\Lambda_{\alpha,p,\nu_H,\nu_E}$ decreases as p increases. Thus, adding variables decreases power unless variables contribute to separation.

- 5. When $\nu_H = 1$ or $\nu_H = 2$ or p = 1 or p = 2, Λ can be transformed to follow an F distribution.
 - If $\nu_H = 1$

$$\frac{\nu_E - p + 1}{p} \quad \frac{1 - \Lambda}{\Lambda} \sim F_{p,\nu_E - p + 1}$$

• If $\nu_H = 2$

$$\frac{\nu_E - p + 1}{p} \quad \frac{1 - \sqrt{\Lambda}}{\sqrt{\Lambda}} \sim F_{2p,2(\nu_E - p + 1)}$$

• If p = 1

$$\frac{\nu_E}{\nu_H} \quad \frac{1-\Lambda}{\Lambda} \sim F_{\nu_H,\nu_E}$$

• If p = 2

$$\frac{(\nu_E - 1)}{\nu_H} \quad \frac{1 - \sqrt{\Lambda}}{\sqrt{\Lambda}} \sim F_{2\nu_H, 2(\nu_E - 1)}$$

6. Approximate tests

• For p > 2 or $\nu_H > 2$ and n large

$$\chi^2 = -\left[\nu_E - \frac{1}{2}\left(p - \nu_H + 1\right)\right] \ln \Lambda \overset{\text{approx}}{\sim} \chi^2_{p\,\nu_H}$$

Approximately valid when $p^2 + \nu_H^2 \leq \frac{1}{3} \left[\nu_E - \frac{1}{2} \left(p - \nu_H + 1 \right) \right]$

• More correct approximate distribution for Λ (exact when ν_H or p is 1 or 2):

$$F = \frac{1 - \Lambda^{1/t}}{\Lambda^{1/t}} \quad \frac{df_2}{df_1} \stackrel{\text{approx}}{\sim} F_{df_1, df_2}$$

$$df_{1} = p\nu_{H}$$

$$df_{2} = wt - \frac{1}{2}(p\nu_{H} - 2)$$

$$w = \nu_{E} + \nu_{H} - \frac{1}{2}(p + \nu_{H} + 1)$$

$$t = \begin{cases} \sqrt{\frac{p^{2}\nu_{H}^{2} - 4}{p^{2} + \nu_{H}^{2} - 5}} & \text{for } p^{2} + \nu_{H}^{2} - 5 > 0 & (\text{or } p + \nu_{H} > 3) \\ 1 & \text{for } p^{2} + \nu_{H}^{2} - 5 \le 0 & (\text{or } p + \nu_{H} \le 3) \end{cases}$$

Other MANOVA Tests

Let $(\lambda_1, \ldots, \lambda_s)$ be the ordered eigenvalues of $\mathbf{E}^{-1}\mathbf{H}$, where $s = \min(p, \nu_H) = \operatorname{rank}$ of \mathbf{H}

• Roy's Largest Root:

$\theta = \lambda_1$

- Note: SAS and most authors denote Roy's Largest Root as λ_1 (the largest root of $\mathbf{E}^{-1}\mathbf{H}$). <u>RC</u> defines Roy's Largest Root as $\xi_1 = \frac{\lambda_1}{1+\lambda_1}$, which is the largest root of $(\mathbf{E} + \mathbf{H})^{-1}\mathbf{H}$. - Approximate *F*-statistic (used by SAS):

$$F_{\theta} = \frac{(\nu_E - d + \nu_H)}{d} \lambda_1$$

is an upper bound for "true F" which is distributed

$$F_d, \nu_E - d + \nu_H$$

where $(d = \max(p, \nu_H))$

- * Thus, F_{θ} -test is anti-conservative (yields lower bound on *p*-value)
- The eigenvector \mathbf{a}_1 corresponding to λ_1 comprises the discriminant function coefficients.
- For programs unable to obtain eigenvalues of nonsymmetric matrices, we can use the fact that λ_1 is a solution to both

$$(\mathbf{E}^{-1}\mathbf{H} - \lambda \mathbf{I})\mathbf{a} = \mathbf{0}$$

and

$$(\underbrace{\mathbf{E}^{-\frac{1}{2}}\mathbf{H}\mathbf{E}^{-\frac{1}{2}}}_{\text{"symmetric"}} -\lambda \mathbf{I}) \underbrace{\mathbf{E}^{\frac{1}{2}}\mathbf{a}}_{\text{"e'vector of}} = \mathbf{0}$$

• Pillai's Trace:

$$V = \sum_{i=1}^{s} \frac{\lambda_i}{1+\lambda_i}$$
$$= \operatorname{tr}\left\{ (\mathbf{E} + \mathbf{H})^{-1} \mathbf{H} \right\} = \sum_{i=1}^{s} \xi_i$$

where ξ_1, \ldots, ξ_s are the *s* ordered e'vals of $(\mathbf{E} + \mathbf{H})^{-1} \mathbf{H}$ - Note 1:

– Note 2:

$$\xi_i = \frac{\lambda_i}{1 + \lambda_i} \text{ and } \lambda_i = \frac{\xi_i}{1 - \xi_i}$$

Approximate F-statistic (used in SAS):

$$F_V = \frac{(2N+s+1)}{(2m+s+1)} \left(\frac{V}{s-V}\right) \sim F_{s(2m+s+1),s(2N+s+1)}$$

where

$$s = \min(\nu_H, p)$$

$$m = \frac{1}{2} (|\nu_H - p| - 1)$$

$$N = \frac{1}{2} (\nu_E - p - 1)$$

• Lawley-Hotelling Trace

$$U = \sum_{i=1}^{s} \lambda_i$$
$$= \operatorname{tr} \{ \mathbf{E}^{-1} \mathbf{H} \}$$

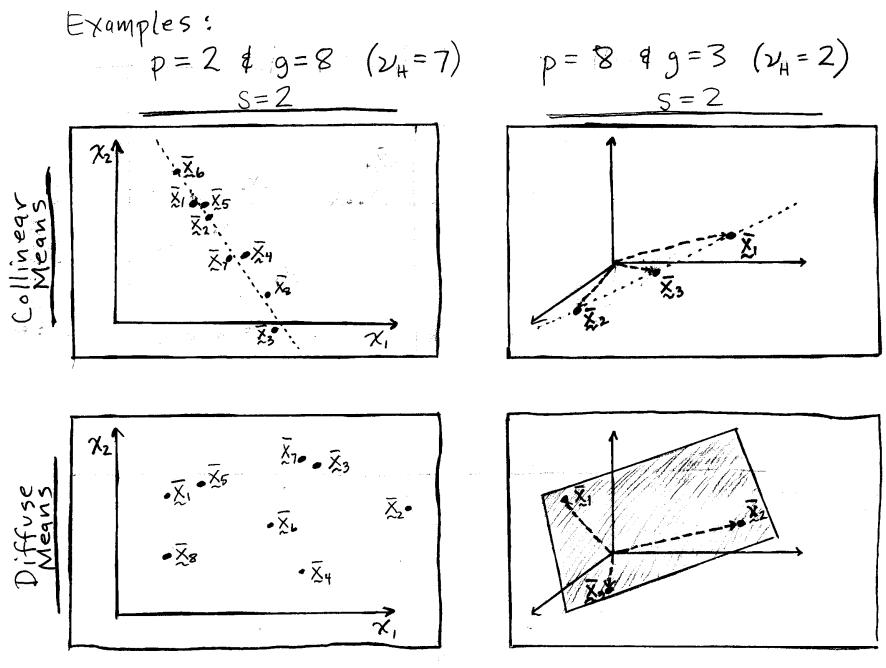
Approximate F-statistic (used in SAS):

$$F_u = \frac{2(sN+1)}{s^2(2m+s+1)}U \sim F_{s(2m+s+1),2(sN+1)}$$

 \rightarrow Also known as "Hotelling's generalized T^2 "

Why four test statistics?

- All 4 are exact tests (i.e., have size α), but when H_0 not true they have different power
- For $p = 1, \mu_1, \ldots, \mu_k$ can be ordered along 1 dimension (line) and *F*-test is U.M.P.
- For $p > 1, \mu_1, \ldots, \mu_k$ are points in $s = \min(p, \nu_H)$ dimensions. But means may in fact occupy only a subspace of the *s* dimensions; e.g., they may lie close to a line (1-D) or a plane (2-D).



Comparing A, O, V, & U:				
Criterion	Best King Worst			
• Type I error rate under basic assumptions	All 4 statistics are same			
· Power under basic assumptions & diffuse means	VAUB			
· Power under basic assumptions & collinear means	e u a v			
·Type I error rate with heterogeneous covariance matrices	VAUÐ			
matrices	11 21			

ex Visual memory task

 $x_1 = \%$ correct on positive stimulus questions $x_2 = \%$ correct on negative stimulus questions g = 3 (One healthy group and two impaired groups)

ex Egyptian skulls

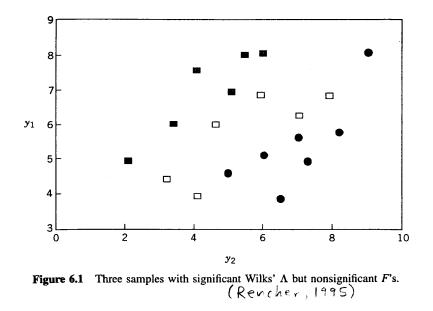
- $x_1 = \text{maximum breadth of skull (mm)}$
- $x_2 = \text{basibregmatic height of skull (mm)}$
- $x_3 = \text{basialveolar length of skull (mm)}$
- $x_4 = \text{nasal height of skull (mm)}$
- g = 3 (4000 B.C., 3300 B.C., 1850 B.C.)

ex Rootstock

$$x_1 = \text{trunk girth at 4 years (mm × 100)}$$

 $x_2 = \text{extension growth at 4 years (m)}$
 $x_3 = \text{trunk girth at 15 years (mm × 100)}$
 $x_4 = \text{weight of tree above ground at 15 years (lb × 1000)}$
 $g = 6$

Follow-up analyses



Although only multivariate tests could detect group differences above, we still are often interested in follow-up analyses after conducting a multivariate analysis.

- Univariate hypothesis (F) tests
- Multivariate contrasts
- Confidence intervals/tests for $\mu_{ij} \mu_{kj}$ (treatment differences for j^{th} variable)
- Analysis of discriminant function

Univariate F-tests

Often interested in univariate ANOVA for testing

$$H_{0,i}: \begin{array}{c} \mu_{1i} = \mu_{2i} = \dots = \mu_{gi}, \quad i = 1, \dots, p \\ \uparrow \\ \begin{array}{c} \text{mean of} \\ i\text{th var.} \\ \text{for 1st} \\ \text{group} \end{array}$$

- Some advocate a "protected" univariate test approach:
 - 1. Conduct overall size α test of $H_0: \mu_1 = \cdots = \mu_g$ using multivariate test (e.g. Λ)
 - 2. Test each of $H_{0,i}$ (i = 1, ..., p) at level α only if multivariate test in step 1 rejects. [That is, when H_0 is "accepted" this approach automatically "accepts" $H_{0,1}, H_{0,2}, \ldots, H_{0,p}$.]

Defining our experiment by the p tests in step 2, the overall EER is (for independent variables when H_0 is true):

Pr{at least one
$$H_{0,i}$$
 rejects} = $(\alpha) (1 - (1 - \alpha)^p)$
 $\leq \alpha$

What about properties of individual tests when H_0 is false??

Suppose:

$$\boldsymbol{\mu}_{1} = \begin{bmatrix} \mu_{11} \\ \mu_{12} \\ \vdots \\ \mu_{1p} \end{bmatrix} = \underbrace{\boldsymbol{\mu}}_{p \times 1} + \begin{bmatrix} \delta \\ 0 \\ \vdots \\ 0 \end{bmatrix} \text{ and } \boldsymbol{\mu}_{i} = \begin{bmatrix} \mu_{i1} \\ \mu_{i2} \\ \vdots \\ \mu_{ip} \end{bmatrix} = \boldsymbol{\mu}, i = 2, \dots, g$$

Let δ be some value such that our test of $H_0: \mu_1 = \cdots = \mu_p$ using Λ has power = .50. Consider the "partial" experiment defined by the p-1 tests of $H_{0,2}, H_{0,3}, \ldots, H_{0,p}$.

The partial EER for this scenario (assuming independence) is

$$\Pr\underbrace{\{\text{at least one rejection among } H_{0,2}, \dots, H_{0,p}\}}_{"A"}$$

=
$$\Pr\{ ``A" | \Lambda \text{ rejects} \} \cdot \Pr\{\Lambda \text{ rejects} \}$$

= $\left[1 - (1 - \alpha)^{p-1} \right] \cdot (.50)$

Thus, the partial EER can be dramatically larger than α [ex] $p = 10, \alpha = .05 \Rightarrow$ partial EER $\approx .20$

Conclusion:

"Protected F test" approach protects overall EER, but may have poor properties for other inferences

 \rightarrow Consider tests at $\frac{\alpha}{p}$ level

Contrasts (multivariate)

• Already considered contrasts of the type $\underset{q \times p_{p \times 1}}{\mathbf{C}} \boldsymbol{\mu}$ for testing $H_0: \mathbf{C} \boldsymbol{\mu} = 0$, where each row of \mathbf{C} sums to 0

ex Linear trend among 4 observations?

$$H_{0}:\begin{bmatrix} -3 & -1 & 1 & 3 \end{bmatrix} \begin{bmatrix} \mu_{\mathrm{day1}} \\ \mu_{\mathrm{day2}} \\ \mu_{\mathrm{day3}} \\ \mu_{\mathrm{day4}} \end{bmatrix}$$

• Here consider contrasts of the type

$$\boldsymbol{\delta} = c_1 \boldsymbol{\mu}_1 + c_2 \boldsymbol{\mu}_2 + \dots + c_g \boldsymbol{\mu}_g = \mathbf{Mc}$$

where $\mathbf{M} = \underbrace{\begin{bmatrix} \boldsymbol{\mu}_1 & \boldsymbol{\mu}_2 & \cdots & \boldsymbol{\mu}_g \end{bmatrix}}_{p \times g}$

$$\hat{\boldsymbol{\delta}} = c_1 \bar{\mathbf{x}}_1 + c_2 \bar{\mathbf{x}}_2 + \dots + c_g \bar{\mathbf{x}}_g$$

$$\operatorname{var}\{\hat{\boldsymbol{\delta}}\} = \sum_{i=1}^{g} c_i^2 \frac{\boldsymbol{\Sigma}}{n_i} = \left(\sum_{i=1}^{g} \frac{c_i^2}{n_i}\right) \boldsymbol{\Sigma}$$
$$\widehat{\operatorname{var}}\{\hat{\boldsymbol{\delta}}\} = \left(\sum_{i=1}^{g} \frac{c_i^2}{n_i}\right) \mathbf{S}_{p\ell}$$
$$\mathbf{S}_{p\ell} = \frac{1}{2} \mathbf{E} \text{ and } \nu_E = \sum_{i=1}^{g} (n_i - 1).$$

where $\mathbf{S}_{p\ell} = \frac{1}{\nu_E} \mathbf{E}$ and $\nu_E = \sum_{i=1}^{s} (n_i - 1)$. So, our test is based on

$$T^{2} = \hat{\boldsymbol{\delta}}' \left[\widehat{\operatorname{var}} \left\{ \hat{\boldsymbol{\delta}} \right\} \right]^{-1} \hat{\boldsymbol{\delta}} \sim T^{2}_{p,\nu_{E}}$$

or define

$$\mathbf{H}_{1} = \frac{1}{\sum_{i=1}^{g} \frac{c_{i}^{2}}{n_{i}}} \hat{\boldsymbol{\delta}} \hat{\boldsymbol{\delta}}' \text{ and } \boldsymbol{\Lambda} = \frac{|\mathbf{E}|}{|\mathbf{E} + \mathbf{H}_{1}|} \sim \boldsymbol{\Lambda}_{p,1,\nu_{E}}$$

Confidence intervals for treatment differences $(\mu_{ij} - \mu_{kj})$

Interest in components of difference between groups

$$oldsymbol{\mu}_i - oldsymbol{\mu}_k = oldsymbol{ au}_i - oldsymbol{ au}_k$$

Specifically, interested in the jth component of this difference vector

$$\mu_{ij} - \mu_{kj} = \tau_{ij} - \tau_{kj}$$

which is estimated by $\bar{x}_{ij} - \bar{x}_{kj}$

Because we often want to obtain confidence intervals for all g(g-1)/2pairwise comparisons for each of p variables simultaneously, we use a Bonferroni adjustment to protect overall EER. $100(1-\alpha)\%$ (Simultaneous) Confidence Interval for $\mu_{ij} - \mu_{kj}$ is:

$$(\bar{x}_{ij} - \bar{x}_{kj}) \pm t \underbrace{[\alpha/(pg(g-1))]}_{\frac{\alpha}{2} \text{ divided by}}, [\sum_{i=1}^{g} (n_i-1)] \sqrt{s_{pl,jj} \left(\frac{1}{n_i} + \frac{1}{n_k}\right)}_{\# \text{ of comparisons}}$$
$$= pg(g-1)/2$$

where $s_{pl,jj}$ is the j^{th} diagonal element of $\mathbf{S}_{p\ell} = \mathbf{E} / (\sum_{i=1}^{g} (n_i - 1))$

Warning for SAS implementation

SAS uses upper $\frac{\alpha}{g(g-1)}$ quantile instead of upper $\frac{\alpha}{pg(g-1)}$ quantile of t distribution

(Bonferroni intervals are part of univariate output.)

 \rightarrow Adjust by specifying ALPHA in MEANS statement

$$ex$$
 $p = 3, g = 5$, desired overall $EER = .05$

```
proc glm;

class group;

model y1 y2 y3 = group;

means group/bon alpha = .016667 \leftarrow \frac{.05}{p};

run;
```

ex Rootstock

Analysis of discriminant function

(More detail to come in Section V of the course) g = 2 case:

Choose **a** to maximize (for $\mathbf{a} \neq \mathbf{0}$):

$$\begin{aligned} \frac{\left[\mathbf{a}'\left(\bar{\mathbf{x}}_{1}-\bar{\mathbf{x}}_{2}\right)\right]^{2}}{\mathbf{a}'\mathbf{S}_{p\ell}\mathbf{a}} &= \frac{\mathbf{a}'\left(\bar{\mathbf{x}}_{1}-\bar{\mathbf{x}}_{2}\right)\left(\bar{\mathbf{x}}_{1}-\bar{\mathbf{x}}_{2}\right)'\mathbf{a}}{\mathbf{a}'\mathbf{S}_{p\ell}\mathbf{a}}\\ \Longrightarrow \mathbf{a} &= \mathbf{S}_{p\ell}^{-1}\left(\bar{\mathbf{x}}_{1}-\bar{\mathbf{x}}_{2}\right)\end{aligned}$$

g > 2 case:

Choose **a** to maximize (for $\mathbf{a} \neq \mathbf{0}$):

$$\lambda_1 = \frac{\mathbf{a'Ha}}{\mathbf{a'Ea}}$$

 $\implies \lambda_1 = \text{largest e'value of } \mathbf{E}^{-1}\mathbf{H} \text{ and } \mathbf{a}_1 \text{ is corresp. e'vec}$

• Relative importance of 1^{st} disc fcn = $\frac{\lambda_1}{\sum_{i=1}^s \lambda_i}$

ex Rootstock

	$\underline{\text{Girth}4}$	$\underline{\text{Growth}}$	$\underline{\text{Girth15}}$	Weight
Univariate F	1.93	2.91	11.97	12.16

 $\mathbf{a} = [.4703 \quad -.2627 \quad .6532 \quad -.0738]$

Recall that $a_i^* = a_i \sqrt{s_{p\ell,ii}} = a_i \times \sqrt{\frac{1}{\nu_E} e_{ii}}$, where e_{ii} is the *i*th diagonal element of **E**, so

$$\mathbf{a}^{*} = \frac{1}{\sqrt{42}} \begin{bmatrix} .4703\sqrt{.3200} & -.2627\sqrt{12.1428} & .6532\sqrt{4.2908} & -.0738\sqrt{1.712} \end{bmatrix}$$
$$= \begin{bmatrix} .0411 & -.1413 & .2088 & -.0149 \end{bmatrix}$$

Test for statistical significance of final m discriminant functions:

$$\Lambda_m = \prod_{i=m}^s \frac{1}{1+\lambda_i} \sim \Lambda_{p-m+1,\nu_H-m+1,\nu_E-m+1}$$

Tests for additional information

Let
$$\mathbf{x}_{\ell j} = \begin{bmatrix} \mathbf{y}_{\ell j} \\ \mathbf{z}_{\ell j} \end{bmatrix} \leftarrow p \times 1 \\ \leftarrow q \times 1$$
, $j = 1, \dots, n_{\ell}$

be (p+q)-variate observations from the ℓ^{th} group

• Wish to determine if \mathbf{z} makes a significant contribution beyond \mathbf{y} in detecting separation of groups

Calculate:

$$\mathbf{E}_{(p+q)\times(p+q)} = \begin{bmatrix} \mathbf{E}_{yy} & \mathbf{E}_{yz} \\ \mathbf{E}_{zy} & \mathbf{E}_{zz} \end{bmatrix} \text{ and } \mathbf{H}_{(p+q)\times(p+q)} = \begin{bmatrix} \mathbf{H}_{yy} & \mathbf{H}_{yz} \\ \mathbf{H}_{zy} & \mathbf{H}_{zz} \end{bmatrix}$$
$$\Lambda_{yz} = \frac{|\mathbf{E}|}{|\mathbf{E} + \mathbf{H}|}$$
$$\Lambda_{y} = \frac{|\mathbf{E}_{yy}|}{|\mathbf{E}_{yy} + \mathbf{H}_{yy}|}$$

Test of additional info:

$$\begin{array}{c} \Lambda_{z|y} = \frac{\Lambda_{yz}}{\Lambda_y} \sim \Lambda_{q,\nu_H,\nu_E-p} \\ \uparrow & \uparrow & \uparrow \\ \text{``partial } \Lambda & & \# \text{ of } & \# \text{ of } \\ \text{statistic''} & & \text{vars } \\ & & \text{in } \mathbf{z} & \text{ in } \mathbf{y} \end{array}$$

Two-Way MANOVA (fixed-effects)

Model:

$$\begin{aligned} \mathbf{x}_{ijk} &= \boldsymbol{\mu} + \boldsymbol{\alpha}_i + \boldsymbol{\beta}_j + \boldsymbol{\gamma}_{ij} + \mathbf{e}_{ijk} \\ i &= 1, \dots, a \\ j &= 1, \dots, b \\ k &= 1, \dots, n \end{aligned}$$
 (for simplicity, assume $n_{ij} = n \ \forall \ i, j$)

•
$$\sum_{i=1}^{a} \alpha_i = \sum_{j=1}^{b} \beta_i = \sum_{i=1}^{a} \gamma_{ij} = \sum_{j=1}^{b} \gamma_{ij} = \mathbf{0}$$

• Assume $\mathbf{e}_{ijk} \sim N_p(\mathbf{0}, \mathbf{\Sigma})$

- $\bar{\mathbf{x}}_{i.}$ = average over *i*th level of factor A
- $\bar{\mathbf{x}}_{.j}$ = average over *j*th level of factor B
- $\bar{\mathbf{x}}_{ij}$ = average over *i*th level of A and *j*th level of B

Test for A, B, and AB (interaction):

$$\Lambda_{A} = \frac{|\mathbf{E}|}{|\mathbf{E} + \mathbf{H}_{A}|} \sim \Lambda_{p,a-1,ab(n-1)}$$
$$\Lambda_{B} = \frac{|\mathbf{E}|}{|\mathbf{E} + \mathbf{H}_{B}|} \sim \Lambda_{p,b-1,ab(n-1)}$$
$$\Lambda_{AB} = \frac{|\mathbf{E}|}{|\mathbf{E} + \mathbf{H}_{AB}|} \sim \Lambda_{p,(a-1)(b-1),ab(n-1)}$$

Follow-up analyses

- Individual *F*-tests (univariate anova's)
 - As You Might Expect (AYME)
- Contrasts
 - AYME
- C.I.'s for treatment effects
 - AYME
- Analysis of discriminant function
 - AYME
 - * For analyzing contribution of p variables to separation of levels of A use first dicrim. function (e'vector) of $\mathbf{E}^{-1}\mathbf{H}_A$
 - * Analyzing levels of $B \Rightarrow \text{use } \mathbf{E}^{-1}\mathbf{H}_B$
 - * Analyzing levels of $AB \Rightarrow$ use $\mathbf{E}^{-1}\mathbf{H}_{AB}$

An interlude about interactions...

Suppose we have two levels of factor A and two levels of factor B:

$$y_{ijk} = \mu + \alpha_i + \beta_j + \gamma_{ij} + \epsilon_{ijk}, \qquad i = 1, 2, \ j = 1, 2$$

Scenario I	<u>A significant?</u>	B sig.?	Interax sig.?
A_1 A_2 A_2 B_1 B_2	Yes	No	No
Scenario II. A_1 A_2 B_1 B_2	N٥	No	Yes
Scenario III A1 B1 B2	Yes	N₀	Ye <i>s</i>
Scenario IV • A ₁ • A ₂	Yes	No	Yes · T

Is Main Effect for A interpretable in Scenarios II, III, and IV?

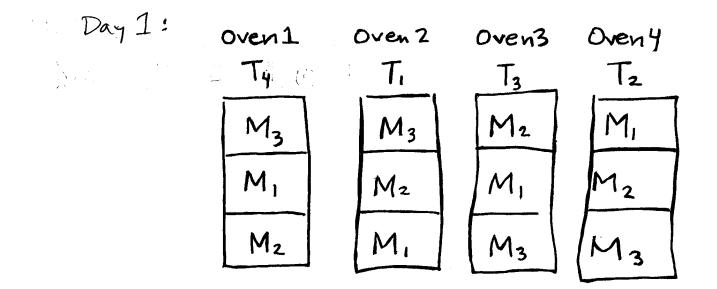
- Yes, if "significance" simply refers to size of effect $\alpha_1 \alpha_2$ (i.e., effect of A averaged over levels of B).
 - "Significant" doesn't mean "one level is best"
 - "Significance of Main Effect for A" is affected by number of levels of B and sample size for each level

Mixed Model MANOVA (Split-plot)

ex

- 4 temperatures $(T_i, i = 1, \dots, 4)$ t = 4
- 3 days $(D_j, j = 1, ..., 3)$ d = 3
- 3 metal alloys $(M_k, k = 1, \dots, 3)$ m = 3

 \mathbf{x}_{ijk} is a *p*-variate response of metal strength



Source
$$df$$
 Tests
T $t-1=3 \in [H_0]/[H_0+H_1]$
 $D t(d-1)=8$
 $M m-1=2 \in [I \in [/I \in +H_m]]$
 $TM (t-1)(m-1)=b \in [I \in [/I \in +H_m]]$
 $I \in [/I \in +H_m]$
 $I \in [/I \in +H$

III.B.iv. Profile Analysis

p-variate response consists of tests, questions, etc. measured on members of g groups.

ex Guinea pigs on three diets

• Weights measured at ends of week 1, 3, 4, 5, 6, & 7

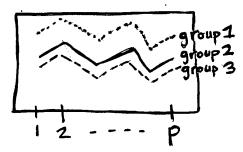
Break hypothesis:

$$H_0: \boldsymbol{\mu}_1 = \boldsymbol{\mu}_2 = \dots = \boldsymbol{\mu}_g$$

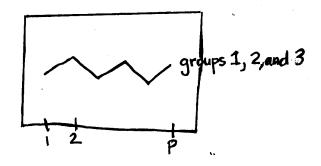
into three more specific hypotheses:

 H_{01} : "The g profiles are parallel"

[ex] $H_{0,1}$ true might yield a profile plot like:



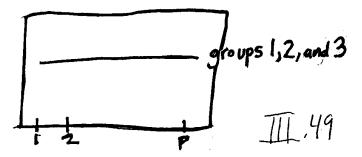
 H_{02} : "The g profiles are at same level" ex $H_{0,1}$ and $H_{0,2}$ true might yield a profile plot like:



 H_{03} : "The g profiles are flat"

ex

 $H_{0,1}, H_{0,2}$, and $H_{0,3}$ yields the profile plot:



Formalizing the null hypotheses

• "Parallelism": Difference in responses between any time points is the same for all groups.

$$H_{01}: \quad \mu_{1j} - \mu_{1(j-1)} = \mu_{2j} - \mu_{2(j-1)} = \dots = \mu_{gj} - \mu_{g(j-1)} \text{ for } j = 2, \dots, p$$

OR

$$\mathbf{C}\mu_{1} = \mathbf{C}\mu_{2} = \dots = \mathbf{C}\mu_{g}$$

where
$$\mathbf{C}_{(p-1)\times p} = \begin{bmatrix} -1 & 1 & 0 & \cdots & 0 & 0 \\ 0 & -1 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & -1 & 1 \end{bmatrix}$$

or **C** can be any other full row rank $(p-1) \times p$ matrix such that $\mathbf{C1} = \mathbf{0}$

• "Same level": Total (or average) response (over time) is the same for all groups.

$$H_{02}: \mathbf{1}'\boldsymbol{\mu}_1 = \mathbf{1}'\boldsymbol{\mu}_2 = \cdots = \mathbf{1}'\boldsymbol{\mu}_g$$

- Note: If H_{01} holds, we can also refer to H_{02} as the hypothesis of "coincident profiles" and H_{02} can be written:

$$H_{02}: \mu_{1j} = \mu_{2j} = \dots = \mu_{gj}$$
 for $j = 1, \dots, p$

• "Flatness": No change in response (over time) for the profiles — responses at each time (averaged across groups) are the same.

$$H_{03}: \frac{\mu_{11} + \mu_{21} + \dots + \mu_{g1}}{g} = \dots = \frac{\mu_{1p} + \mu_{2p} + \dots + \mu_{gp}}{g}$$

OR

$$\mathbf{C} \underbrace{\left(\frac{\boldsymbol{\mu}_{1} + \dots + \boldsymbol{\mu}_{g}}{g}\right)}_{"\boldsymbol{\mu}" \leftarrow \text{ average profile}} = \mathbf{O} \text{ or } \mathbf{C}\boldsymbol{\bar{\mu}} = \mathbf{O}$$

- Note: If H_{01} and H_{02} hold, H_{03} can also be written $H_{03}: \mu_{11} = \mu_{12} = \cdots = \mu_{1p} = \mu_{21} = \cdots = \mu_{gp}$ that is, all pg response means are equal.

<u>Tests</u>

Test for H_{01} :

$$\Lambda = \frac{|\mathbf{CEC'}|}{|\mathbf{C}(\mathbf{E} + \mathbf{H})\mathbf{C'}|} \sim \Lambda_{p-1,\nu_H,\nu_E}$$

Test for
$$H_{02}$$
:

$$\Lambda = \frac{\mathbf{1'E1}}{\mathbf{1'E1} + \mathbf{1'H1}} \sim \Lambda_{1,\nu_H,\nu_E}$$
$$\Rightarrow \frac{1 - \Lambda}{\Lambda} \frac{\nu_E}{\nu_H} \sim F_{\nu_H,\nu_E}$$

Test for H_{03} :

$$T^{2} = \left(\sum_{\ell=1}^{g} n_{\ell}\right) \left(\mathbf{C}\bar{\mathbf{x}}\right)' \left(\frac{1}{\nu_{e}}\mathbf{C}\mathbf{E}\mathbf{C}'\right)^{-1} \mathbf{C}\bar{\mathbf{x}} \sim T_{p-1,\nu_{E}}^{2}$$
$$\Rightarrow \frac{\nu_{E} - (p-1) + 1}{\nu_{E}(p-1)} T^{2} \sim F_{p-1,\nu_{E} - (p-1) + 1}$$

ex Guinea Pigs

 H_{01} : parallel? H_{02} : same level? H_{03} : flat?

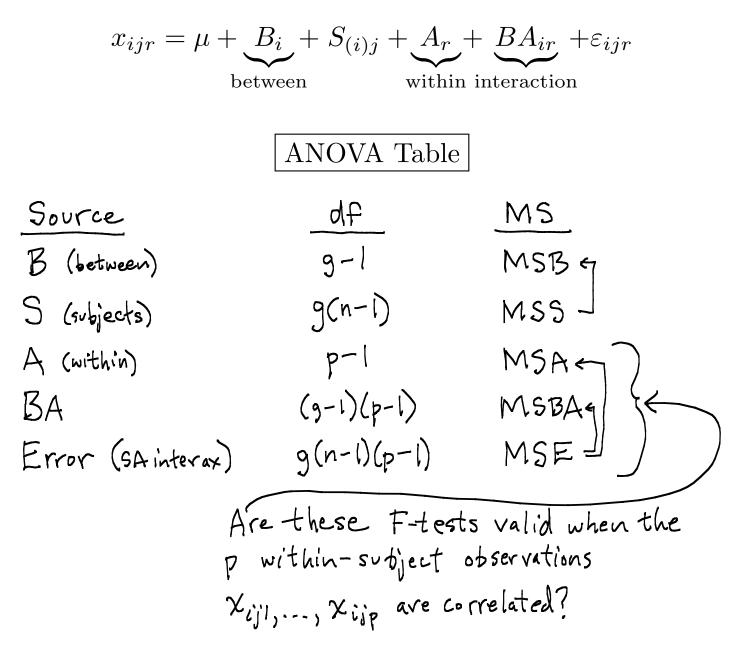
III.B.v. Repeated Measures

- Similarities to "profile analysis"
- Each subject measured under several treatments or time points
- Comparing means of treatments applied to each subject: within-subjects tests
- Comparing levels of factors assigned to groups of subjects: between-subjects tests

	Structure of g -groups R.M. experiment				
Factor B (between-subj	ects) Subjects	Fo (with Aı	actor A in-subjects Az	s) Ap	
Bi	Su	(X ₁₁₁₎	X ₁₁₂	$\chi_{iip}) =$	X
• • •	S _{in}	(X _{ini}	X _{in2}	Xinp) =	: Xm
Bg	S _{g1}	(X _{g11}	Xg12 ···	$\chi_{glp}) =$	X
	Sgn	(Xgn 1		· Xgnp)=	

Г

Univariate model: (split-plot):



• Standard univariate assumption:

$$\operatorname{var}\{\mathbf{x}_{ij}\} = \mathbf{\Sigma} = \sigma^2 \mathbf{I}_p \quad \forall i, j \quad \leftarrow \text{"sphericity"}$$

Univariate F-tests still valid as long as

$$\mathbf{C} \mathbf{\Sigma} \mathbf{C}' = \sigma^2 \mathbf{I}$$

$$\uparrow \qquad (p-1) \times p$$
orthonormal
contrast
matrix

This condition is often called "sphericity" (but we'll say "generalized sphericity" for clarity)

ex For p = 4, we could use

$$\mathbf{C} = \begin{bmatrix} 3/\sqrt{12} & -1/\sqrt{12} & -1/\sqrt{12} & -1/\sqrt{12} \\ 0 & 2/\sqrt{6} & -1/\sqrt{6} & -1/\sqrt{6} \\ 0 & 0 & 1/\sqrt{2} & -1/\sqrt{2} \end{bmatrix}$$

Special case of $\mathbf{C}\mathbf{\Sigma}\mathbf{C}' = \sigma^2 \mathbf{I}$:

$$\boldsymbol{\Sigma} = \sigma^{2} \begin{bmatrix} 1 & \rho & \cdots & \rho \\ \rho & 1 & \cdots & \rho \\ \vdots & \ddots & \ddots & \vdots \\ \rho & \rho & \cdots & 1 \end{bmatrix} = \sigma^{2} \left[(1-\rho) \mathbf{I} + \rho \mathbf{1} \mathbf{1}' \right]$$

– This case is called "compound symmetry"

Univariate strategies

1. Assume "generalized sphericity"

Fehlberg (1980): Use $H_0: \mathbf{C}\Sigma\mathbf{C}' = \sigma^2\mathbf{I}$ preliminary test using $\alpha = .40$. [This test to be discussed later in the course] If hypothesis is "accepted," use standard *F*-tests for *A*: $F = \frac{MSA}{MSE} \sim F_{p-1,g(n-1)(p-1)}$... for *AB*: $F = \frac{MSAB}{MSE} \sim F_{(g-1)(p-1),g(n-1)(p-1)}$ BUT, even mild departures from $\mathbf{C}\Sigma\mathbf{C}' = \sigma^2\mathbf{I}$ can seriously inflate Type I error (Boik, *Psychometrika*, 1981).

2. Conservative test:

... for A:
$$F = \frac{MSA}{MSE} \sim F_{1,g(n-1)}$$

... for AB: $F = \frac{MSAB}{MSE} \sim F_{(g-1),g(n-1)}$

• <u>Too</u> conservative

- 3. Adjusted F-tests
 - A compromise between approaches 1 and 2 when sphericity violated.
 - Greenhouse and Geisser (1959) recommend approximate *F*-tests involving within-subjects factor which reduce numerator and denominator d.f. by a factor of

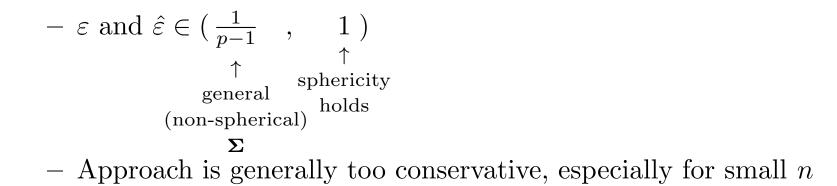
$$\varepsilon = \frac{\left[\operatorname{tr} \left(\boldsymbol{\Sigma} - \frac{1}{p} \mathbf{1} \mathbf{1}' \boldsymbol{\Sigma} \right) \right]^2}{(p-1) \operatorname{tr} \left[\left(\boldsymbol{\Sigma} - \frac{1}{p} \mathbf{1} \mathbf{1}' \boldsymbol{\Sigma} \right)^2 \right]}$$

SAS: "G – G
$$\varepsilon$$
"

- To estimate ε , use $\hat{\Sigma} = \frac{\mathbf{E}}{\nu_E}$
- F-tests ...

... for A:
$$F = \frac{MSA}{MSE} \sim F_{\hat{\varepsilon}(p-1),\hat{\varepsilon}g(n-1)(p-1)}$$

... for AB: $F = \frac{MSAB}{MSE} \sim F_{\hat{\varepsilon}(g-1)(p-1),\hat{\varepsilon}g(n-1)(p-1)}$



- Huynh and Feldt (1976) give another expression for ε SAS: "H - F ε "
 - Less conservative
 - "H F ε " can exceed 1 \Rightarrow set equal to 1

Multivariate Model:

 $\mathbf{x}_{ij} = \boldsymbol{\mu} + \boldsymbol{\beta}_i + \boldsymbol{\varepsilon}_{ij}$

- Notes about $\boldsymbol{\beta}_i$
 - $-\beta_i$ is a *p*-vector of main effects for group *i*
 - Tests on factor A (within subjects) and AB interaction constructed with contrasts of β_i (as in profile analysis)
- Standard multivariate assumption:

$$\operatorname{var}\{\mathbf{x}_{ij}\} = \mathbf{\Sigma} \quad \forall \ i, j$$

Note: Σ is completely unrestricted (no sphericity requirement, etc.)

• Several similarities with g groups profile analysis

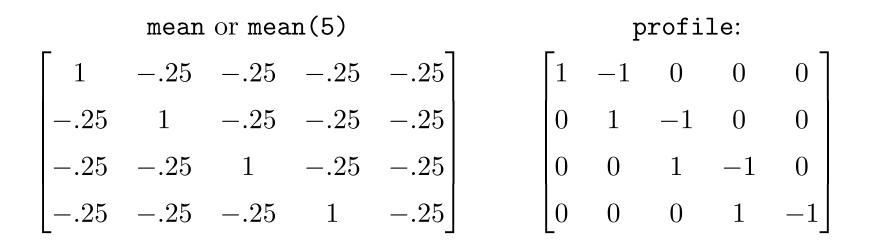
Contrast Matrices in SAS Proc GLM ("repeated" statement) - Assume p=5 times/variables

contrast or contrast(5):	contrast(2):				
$\begin{bmatrix} 1 & 0 & 0 & 0 & -1 \end{bmatrix}$	$\begin{bmatrix} 1 & -1 & 0 & 0 \end{bmatrix}$				
$0 \ 1 \ 0 \ -1$	0 -1 1 0 0				
$0 \ 0 \ 1 \ 0 \ -1$	$0 -1 \ 0 \ 1 \ 0$				
$\begin{bmatrix} 1 & 0 & 0 & 0 & -1 \\ 0 & 1 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 & -1 \\ 0 & 0 & 0 & 1 & -1 \end{bmatrix}$	$\begin{bmatrix} 1 & -1 & 0 & 0 & 0 \\ 0 & -1 & 1 & 0 & 0 \\ 0 & -1 & 0 & 1 & 0 \\ 0 & -1 & 0 & 0 & 1 \end{bmatrix}$				
polynomial	<pre>''repeated time 5 (1 2 5 10 20) polynomial'':</pre>				
$\begin{bmatrix} -2 & -1 & 0 & 1 & 2 \end{bmatrix}$	$\begin{bmatrix}43 &36 &17 & .15 & .80 \end{bmatrix}$				

polynomial
$$(1 \ 2 \ 5 \ 10 \ 20)$$
 polynomial'': $\begin{bmatrix} -2 & -1 & 0 & 1 & 2 \\ 2 & -1 & -2 & -1 & 2 \\ 1 & -2 & 0 & 2 & -1 \\ 1 & -4 & 6 & -4 & 1 \end{bmatrix}$ $\begin{bmatrix} -.43 & -.36 & -.17 & .15 & .80 \\ .43 & .21 & -.33 & -.71 & .39 \\ -.43 & .14 & .73 & -.51 & .08 \\ .49 & -.78 & .37 & -.09 & .01 \end{bmatrix}$

helmert:					
1	25	25	25	25	
0	1	33	33	33	
0	0	1	5	5	
0	0	0	1	-1	

 $\leftarrow The helmert contrast matrix identifies the time at which the treatments cease to change or plateau$



- Test for A (within subjects)
 - Analogous to "flatness" test in profile analysis
 - Want to compare means for x_1, \ldots, x_p averaged across levels of B

Let
$$\bar{\mu} = \sum_{i=1}^{g} \mu_i / g = (\mu_{\cdot 1}, \dots, \mu_{\cdot p})'$$

$$H_0: \mu_{\cdot 1} = \ldots = \mu_{\cdot p} \text{ or } \mathbf{C}\bar{\boldsymbol{\mu}} = \mathbf{O}$$

$$\begin{bmatrix} -1 & 1 & 0 & \cdots & 0 & 0 \\ 0 & -1 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & -1 & 1 \end{bmatrix}$$
 or some similar contrast matrix

Test statistic for A:

$$T^{2} = N \left(\mathbf{C} \quad \bar{\mathbf{x}} \right)' \left(\mathbf{C} \underbrace{\mathbf{S}_{p\ell}}_{\stackrel{\leftarrow}{\nu_{E}}} \mathbf{C}' \right)^{-1} \left(\underbrace{\mathbf{C}}_{(p-1) \times p} \bar{\mathbf{x}} \right) \sim T_{p-1,\nu_{E}}^{2}$$

$$\sum_{i=1}^{g} n_{i} \quad \text{grand} \quad \underbrace{\frac{\nu_{E} - (p-1) + 1}{\nu_{E}(p-1)}}_{T^{2}} T^{2} \sim F_{p-1,\nu_{E}-(p-1)+1}$$

OR

$$\Lambda = \frac{|\mathbf{C}\mathbf{E}\mathbf{C}'|}{|\mathbf{C}(\mathbf{E}+\mathbf{H}^*)\mathbf{C}'|} \sim \Lambda_{p-1,1,\nu_E}$$

where $\mathbf{H}^* = N\bar{\mathbf{x}}\bar{\mathbf{x}}'$ is from the partitioning

$$\sum_{i=1}^{g} \sum_{j=1}^{n_1} \mathbf{x}_{ij} \mathbf{x}'_{ij} = \mathbf{E} + \mathbf{H} + N\bar{\mathbf{x}}\bar{\mathbf{x}}'$$

- Test for B (between subjects)
 - Analogous to "same level" test in profile analysis
 - Want to compare group means (averaging over p levels of A)

$$H_0: \mathbf{1}'\boldsymbol{\mu}_1 = \dots = \mathbf{1}'\boldsymbol{\mu}_g \text{ or } \underbrace{\frac{1}{\sqrt{p}}\mathbf{1}'\boldsymbol{\mu}_1 = \dots = \frac{1}{\sqrt{p}}\mathbf{1}'\boldsymbol{\mu}_g}_{\text{SAS}}$$

* That is, we can just conduct one-way ANOVA on $z_{ij} = \mathbf{1}' \mathbf{x}_{ij}$, so the test statistic for B is

$$\Lambda = rac{\mathbf{1'E1}}{\mathbf{1'E1} + \mathbf{1'H1}} \sim \Lambda_{1,
u_H,
u_E}$$

• Test for AB interaction

– Analogous to "parallelism" in profile analysis

$$H_0: \mathbf{C}\boldsymbol{\mu}_1 = \cdots = \mathbf{C}\boldsymbol{\mu}_g$$

Test statistic for AB:

$$\Lambda = \frac{|\mathbf{C}\mathbf{E}\mathbf{C}'|}{|\mathbf{C}(\mathbf{E}+\mathbf{H})\mathbf{C}'|} \sim \Lambda_{p-1,\nu_H,\nu_E}$$

ex | Wear of fabrics

- Measured in 3 periods (within-subjects factor)
 - 1^{st} 1000 revolutions
 - -2^{nd} 1000 revolutions
 - 3^{rd} 1000 revolutions
- 2 abrasive surfaces (between subjects factor #1)
- 2 fillers (between subjects factor #2)
- 3 levels of "proportion of filler" (between subjects factor #3)
 - 25% filler
 - 50% filler
 - 75% filler
- ? Linear or Quadratic trend in proportion of filler?
- ? Linear or Quadratic trend in periods
- ? How do univariate and multivariate tests compare?

Repeated Measures with 2 Within-Subjects Factors

-		Within-Subjects Factors					
Between-			A		Az		Ay
Subjects Factor	Subjects 5	B	B ₂ B	3 B1	B2	B3 B1	B2 B3
Cı	Տ _ո :	$\chi'_{ij} = (\chi_{ij})$	X ₁₁₂ X1	13 X114	Xus	χ_{μ}	X 1,111 X 1,12)
	S _{In}	$\chi_{in_i} = (\chi_{in_i}$	$\chi_{in_1 2} \chi_{in_1 2}$	11,3 X11,4	Xins	$\chi_{10,6} \cdots \chi_{1,n_{3}}$	$\chi_{i,n_{1}ii}$ $\chi_{i,n_{1}ii}$
C ₂	521			ž	21		
	: S _{2n2}				×2n2		
C3	S31				×2112 X31		
					:		
	San3		-		X3n3		

Model:

$$\mathbf{x}_{ij} = \boldsymbol{\mu} + \boldsymbol{\gamma}_i + \boldsymbol{\varepsilon}_{ij}$$

- γ_i is a *p*-vector of main effects for group *i*
- effects for A, B, AB, AC, BC, ABC assessed with contrasts
- Denote a = number of levels for factor A
- Denote b = number of levels for factor B
- To test factors A, B, and AB, specify contrast matrices with (a-1), (b-1), and (a-1)(b-1) linearly independent rows, respectively.

ex Blood data

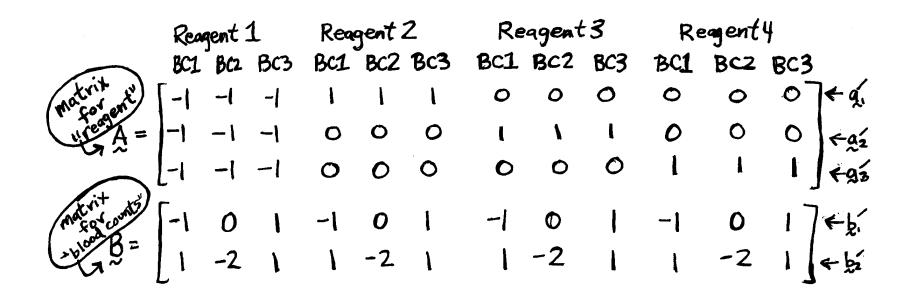
Compare 4 different reagents used in blood testing. (Reagent 1 is standard and reagents 2, 3, 4 are inexpensive alternatives.)

$$\mathbf{A}^* = \begin{bmatrix} -1 & 1 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ -1 & 0 & 0 & 1 \end{bmatrix}$$

– Measuring 3 blood counts (white blood, red blood, hemoglobin)

$$\mathbf{B}^* = \left[\begin{array}{rrrr} -1 & 0 & 1 \\ 1 & -2 & 1 \end{array} \right]$$

 2 groups of 10 subjects with potentially different blood properties — each subject's sample has 12 measures



Note: $\mathbf{A} = \mathbf{A}^* \otimes \mathbf{1}'_b$ and $\mathbf{B} = \mathbf{1}'_a \otimes \mathbf{B}^*$, where a = 4 and b = 3

 $\mathbf{a}_1' \Rightarrow \mathbf{R1} \text{ vs. } \mathbf{R2}$ 1×12 $\mathbf{a}_2' \Rightarrow \mathrm{R1} \text{ vs. } \mathrm{R3}$ $\mathbf{a}_3' \Rightarrow \mathrm{R1} \text{ vs. } \mathrm{R4}$ $\mathbf{b}'_1 \Rightarrow$ white vs. hemoglobin (or linear in bc's) 1×12 $\mathbf{b}_2' \Rightarrow \text{red vs.} \quad \frac{\text{white} + \text{hemo}}{2} \quad \text{(or quadratic in bc's)}$ $\mathbf{G}_{6\times 12} = \begin{bmatrix} \mathbf{a}_1 * \mathbf{b}_1 \\ \mathbf{a}_1 * \mathbf{b}_2 \\ \vdots \\ \mathbf{a}_2 * \mathbf{b}_2 \end{bmatrix} = \mathbf{A}^* \otimes \mathbf{B}^*$ where "*" is an element-wise product (So, first row of **G** is $\begin{bmatrix} 1 & 0 & -1 & -1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$) Test for A (Reagents):

•
$$T^2 = N(\mathbf{A}\,\bar{\mathbf{x}}\,)'(\mathbf{A}\,\mathbf{S}_{p\ell}\,\mathbf{A}')^{-1}\mathbf{A}\bar{\mathbf{x}} \sim T^2_{a-1,\ \nu_E}$$

 $\uparrow \qquad \uparrow \qquad \uparrow$
 $grand \qquad \frac{1}{\nu_E}\mathbf{E} \qquad \qquad \sum_{i=1}^g (n_i-1)$
when only
one between
subjects
factor is used

$$\begin{tabular}{|c|c|c|c|}\hline ex & T_{Reagent}^2 \sim T_{3,18}^2 \\ OR & \\ \end{tabular}$$

• $\Lambda = \frac{|\mathbf{A}\mathbf{E}\mathbf{A}'|}{|\mathbf{A}(\mathbf{E}+\mathbf{H}^*)\mathbf{A}'|} \sim \Lambda_{a-1,1,\nu_E}$ where $\mathbf{H}^* = N\bar{\mathbf{x}}\bar{\mathbf{x}}'$ is from the partitioning

$$\sum_{i=1}^{g} \sum_{j=1}^{n_1} \mathbf{x}_{ij} \mathbf{x}'_{ij} = \mathbf{E} + \mathbf{H} + N\bar{\mathbf{x}}\bar{\mathbf{x}}'$$

Test for B (Blood counts):

- $T^2 = N(\mathbf{B}\bar{\mathbf{x}})'(\mathbf{B}\mathbf{S}_{p\ell}\mathbf{B}')^{-1}\mathbf{B}\bar{\mathbf{x}} \sim T^2_{b-1,\nu_E}$ OR
- $\Lambda = \frac{|\mathbf{B}\mathbf{E}\mathbf{B}'|}{|\mathbf{B}(\mathbf{E}+\mathbf{H}^*)\mathbf{B}'|} \sim \Lambda_{b-1,1,\nu_E}$

Test of AB interaction:

•
$$T^2 = N(\mathbf{G}\bar{\mathbf{x}})'(\mathbf{G}\mathbf{S}_{p\ell}\mathbf{G}')^{-1}\mathbf{G}\bar{\mathbf{x}} \sim T^2_{(a-1)(b-1),\nu_E}$$

OR

•
$$\Lambda = \frac{|\mathbf{GEG'}|}{|\mathbf{G}(\mathbf{E}+\mathbf{H}^*)\mathbf{G'}|} \sim \Lambda_{(a-1)(b-1),1,\nu_E}$$

Test for C (groups):

• Conduct ANOVA test (F-test) using $z_{ij} = \mathbf{1}' \mathbf{x}_{ij}, i = 1, \dots, g, j = 1, \dots, n_i$ OR

•
$$\Lambda = \frac{\mathbf{1'E1}}{\mathbf{1'E1} + \mathbf{1'H1}} \sim \Lambda_{1,\nu_H,\nu_E}$$

Tests for AC, BC, ABC interactions:

•
$$\Lambda = \frac{|\mathbf{A}\mathbf{E}\mathbf{A}'|}{|\mathbf{A}(\mathbf{E}+\mathbf{H})\mathbf{A}'|} \sim \Lambda_{a-1,\nu_H,\nu_E}$$

•
$$\Lambda = \frac{|\mathbf{B}\mathbf{E}\mathbf{B}'|}{|\mathbf{B}(\mathbf{E}+\mathbf{H})\mathbf{B}'|} \sim \Lambda_{b-1,\nu_H,\nu_E}$$

•
$$\Lambda = \frac{|\mathbf{GEG}'|}{|\mathbf{G}(\mathbf{E}+\mathbf{H})\mathbf{G}'|} \sim \Lambda_{(a-1)(b-1),\nu_H,\nu_E}$$

Note: Between subjects effects (e.g., C) and associated interactions (e.g., AC, BC, ABC) use \mathbf{H} (not \mathbf{H}^*)

ex Blood data in SAS

III.B.vii. Tests on Covariance Matrices (Reference: RC, Ch. 7)

• $H_0: \Sigma = \Sigma_0$ vs. $H_1: \Sigma \neq \Sigma_0$ (assuming MVN)

$$u = \nu \left[\ln |\mathbf{\Sigma}_0| - \ln |\mathbf{S}| + \operatorname{tr} \{ \mathbf{S} \mathbf{\Sigma}_0^{-1} \} - p \right]$$

is a modification of the likelihood ratio with $\nu =$ degrees of freedom for **S**.

 $-\nu$ large:

$$u \sim \chi^2_{\frac{1}{2}p(p+1)}$$

 $-\nu$ small to moderate:

$$\left[1 - \frac{1}{6\nu - 1}\left(2p + 1 - \frac{2}{p+1}\right)\right]u \stackrel{\cdot}{\sim} \chi^2_{\frac{1}{2}p(p+1)}$$

• $H_0: \Sigma = \sigma^2 \mathbf{I}$ ("sphericity" ... assuming MVN) Likelihood ratio test:

$$\lambda = \left[\frac{|\mathbf{S}|}{(\mathrm{tr}\{\mathbf{S}\}/p)}\right]^{\frac{n}{2}}$$

 $-2\ln\lambda = -n\ln u$

where
$$u = \lambda^{\frac{2}{n}} = \frac{p^p |\mathbf{S}|}{(\operatorname{tr}\{\mathbf{S}\})^p} = \frac{p^p \prod_{i=1}^p \lambda_i}{(\sum_{i=1}^p \lambda_i)^p}$$

and $\lambda_1, \dots, \lambda_p$ are the e'vals of \mathbf{S}

$$-\nu \text{ large: } -n\ln u \stackrel{\cdot}{\sim} \chi^2_{\frac{1}{2}p(p+1)-1}$$
$$-\nu \text{ small to moderate: } -\left(\nu - \frac{2p^2 + p + 2}{6p}\right)\ln u \stackrel{\cdot}{\sim} \chi^2_{\frac{1}{2}p(p+1)-1}$$

- Note: Testing $\mathbf{C}\mathbf{\Sigma}\mathbf{C}' = \sigma^2 \mathbf{I}$

use $\mathbf{CSC'}$ in place of \mathbf{S} in the test, i.e.,

$$-n\ln\left(\frac{(p-1)^{p-1}|\mathbf{CSC'}|}{(\mathrm{tr}\{\mathbf{CSC'}\})^{p-1}}\right) \sim \chi^2_{\frac{1}{2}(p-1)(p)-1}$$

where $\underset{(p-1)\times p}{\mathbf{C}}$ has orthonormal contrasts as its rows ex p = 4

$$\mathbf{C} = \begin{bmatrix} 3/\sqrt{12} & -1/\sqrt{12} & -1/\sqrt{12} & -1/\sqrt{12} \\ 0 & 2/\sqrt{6} & -1/\sqrt{6} & -1/\sqrt{6} \\ 0 & 0 & 1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix}$$

– Often called "Mauchly's test"

- * Calculated by SAS with "PRINTE" option of "REPEATED" statement in PROC GLM.
- Fehlberg (1980) recommends a preliminary test of $\Sigma = \sigma^2 \mathbf{I}$ at $\alpha = .40$ before using standard univariate *F*-tests in r.m. analysis.

• $H_0: \Sigma_1 = \Sigma_2 = \cdots = \Sigma_g$ (assuming MVN for all groups)

"Box's M" =
$$\frac{|\mathbf{S}_1|^{\frac{\nu_1}{2}} |\mathbf{S}_2|^{\frac{\nu_2}{2}} \cdots |\mathbf{S}_g|^{\frac{\nu_g}{2}}}{|\mathbf{S}_{p\ell}|^{\sum_i \frac{\nu_i}{2}}}$$

where $\nu_i = n_i - 1, i = 1, ..., g$ and $\mathbf{S}_{p\ell} = \frac{\sum_{i=1}^{g} \nu_i \mathbf{S}_i}{\sum_{i=1}^{g} \nu_i}$

-M near $0 \Rightarrow$ "reject H_0 "

$$-M$$
 near $1 \Rightarrow$ "accept H_0 "

- Note:
$$M = \prod_{i=1}^{g} \left(\frac{|\mathbf{S}_i|}{|\mathbf{S}_{p\ell}|} \right)^{\frac{\nu_i}{2}}$$

... is maximized at 1 when $\mathbf{S}_1 = \cdots = \mathbf{S}_g$

... approaches 0 when one or more $|\mathbf{S}_i|$ is very small (with other $|\mathbf{S}_i|$ large)

$$- u = -2(1 - c_1) \ln M \sim \chi^2_{\left[\frac{1}{2}(g-1)p(p+1)\right]}$$

where $c_1 = \left(\sum_{i=1}^g \frac{1}{\nu_i} - \frac{1}{\sum_{i=1}^g \nu_i}\right) \frac{2p^2 + 3p - 1}{6(p+1)(g-1)}$

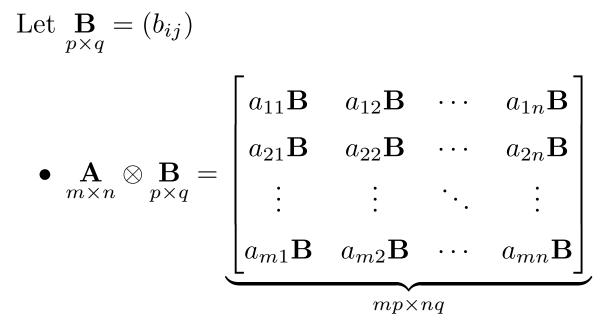
- Note: *M*-test *not* recommended pre-test before T^2 or MANOVA tests
 - * Sensitive to nonnormality (often of little concern) and innocuous forms of heterogeneity (e.g., varying amounts of kurtosis)
- Note: A better approximation is $u \sim F_{a_1,a_2}$. See RC for details.

III.C.i. Multivariate Multiple Regression

A short review of vec and Kronecker notation

Let
$$\mathbf{A}_{m \times n} = \begin{bmatrix} \mathbf{a}'_{1.} \\ \mathbf{a}'_{2.} \\ \vdots \\ \mathbf{a}'_{m.} \end{bmatrix} = \begin{bmatrix} \mathbf{a}_{\cdot 1} & \mathbf{a}_{\cdot 2} & \cdots & \mathbf{a}_{\cdot n} \\ \uparrow \\ \text{an } m \text{-vector} \end{bmatrix} = (a_{ij})$$

• vec $\mathbf{A} = \begin{bmatrix} \mathbf{a}_{\cdot 1} \\ \mathbf{a}_{\cdot 2} \\ \vdots \\ \mathbf{a}_{\cdot n} \end{bmatrix}$ R: " $c(A)$ " gives vec \mathbf{A}



R: "kronecker(A, B)" gives $\mathbf{A} \otimes \mathbf{B}$

Some properties (without proof)

Assuming that all dimensions are appropriate for matrix multiplication...

✓ (a)
$$(\mathbf{A} \otimes \mathbf{B})(\mathbf{C} \otimes \mathbf{D}) = (\mathbf{A}\mathbf{C}) \otimes (\mathbf{B}\mathbf{D})$$
✓ (b) vec $(\mathbf{A}\mathbf{B}\mathbf{C}) = (\mathbf{C}' \otimes \mathbf{A})$ vec \mathbf{B}
(c) tr{ $\{\mathbf{A}\mathbf{B}\} = (\text{vec } \mathbf{A}')' \text{ vec } \mathbf{B} = (\text{vec } \mathbf{A})' \text{ vec } \mathbf{B}'$
(d) tr{ $\{\mathbf{A}\mathbf{B}\mathbf{C}\mathbf{D}\} = (\text{vec } \mathbf{A}')' (\mathbf{D}' \otimes \mathbf{B}) \text{ vec } \mathbf{C} = (\text{vec } \mathbf{A})' (\mathbf{B} \otimes \mathbf{D}') \text{ vec } \mathbf{C}'$
✓ (e) $(\mathbf{A} \otimes \mathbf{B})' = \mathbf{A}' \otimes \mathbf{B}'$
✓ (f) $(\mathbf{A} \otimes \mathbf{B})^{-1} = \mathbf{A}^{-1} \otimes \mathbf{B}^{-1}$

Univariate Multiple Regression:

$$\mathbf{y}_{n \times 1} = \mathbf{X}_{n \times r_{r \times 1}} \boldsymbol{\beta}_{n \times 1} + \mathbf{e}_{n \times 1}$$
$$= \mathbf{0} \text{ and } \operatorname{var}\{\mathbf{e}\} = \sigma^2 \mathbf{I}_n. \text{ Then}$$

$$\hat{\boldsymbol{\beta}} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}$$

$$\uparrow \\ \text{O.L.S.} \\ \text{estimator}}$$

is B.L.U.E. for β .

• Assume $E\{\mathbf{e}\}$

Note: we'll use q to denote the # of xs and r = q + 1 to denote the # of columns in the X matrix when using an intercept

Multivariate Multiple Regression:

$$\mathbf{Y} = \mathbf{X}\mathbf{B} + \mathbf{\Xi}$$

where

$$\mathbf{Y} = \begin{bmatrix} \mathbf{y}_{1}' \\ \vdots \\ \mathbf{y}_{n}' \end{bmatrix} = \begin{bmatrix} \mathbf{y}_{\cdot 1} & \cdots & \mathbf{y}_{\cdot p} \end{bmatrix}$$
$$\mathbf{B} = \begin{bmatrix} \boldsymbol{\beta}_{\cdot 1} & \boldsymbol{\beta}_{\cdot 2} & \cdots & \boldsymbol{\beta}_{\cdot p} \end{bmatrix}$$
$$\mathbf{\Xi} = \begin{bmatrix} \mathbf{e}_{1}' \\ \vdots \\ \mathbf{e}_{n}' \end{bmatrix} = \begin{bmatrix} \mathbf{e}_{\cdot 1} & \cdots & \mathbf{e}_{\cdot p} \end{bmatrix}$$

• Note that

$$\mathbf{y}_{\cdot j} = \mathbf{X}_{n imes r} oldsymbol{eta}_{\cdot j} + \mathbf{e}_{\cdot j} \ n imes 1$$

- Assume $E\{\mathbf{\Xi}\} = \mathbf{0}$, $\operatorname{var}\{\mathbf{e}_{i\cdot}\} = \sum_{p \times p}$, and $\operatorname{cov}\{\mathbf{e}_{i\cdot}, \mathbf{e}_{k\cdot}\} = \mathbf{0}_{p \times p}$ for all $i \neq k$
- Question: Is $\hat{\mathbf{B}}_{r \times p} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y}$ a B.L.U.E.?

Rewrite model:

vec
$$\mathbf{Y} = \text{vec} (\mathbf{XB}) + \text{vec} (\mathbf{\Xi})$$

$$= \underbrace{(\mathbf{I}_p \otimes \mathbf{X})}_{\uparrow} \qquad \underbrace{\text{vec } \mathbf{B}}_{pr \times 1} + \underbrace{\text{vec} (\mathbf{\Xi})}_{\equiv pr}$$

$$\equiv \underset{np \times 1}{\beta} = \underbrace{\mathbf{B}}_{pr \times 1} = \underbrace{$$

Note: $E\{\mathbf{e}\} = \mathbf{0}$

and

$$\operatorname{var}\{\mathbf{e}\} = \operatorname{var}\left\{ \begin{pmatrix} \mathbf{e}_{\cdot 1} \\ \vdots \\ \mathbf{e}_{\cdot p} \end{pmatrix} \right\} = \begin{bmatrix} \sigma_{11}\mathbf{I}_n & \sigma_{12}\mathbf{I}_n & \cdots & \sigma_{1p}\mathbf{I}_n \\ \sigma_{21}\mathbf{I}_n & \sigma_{22}\mathbf{I}_n & \cdots & \sigma_{2p}\mathbf{I}_n \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{p1}\mathbf{I}_n & \sigma_{p2}\mathbf{I}_n & \cdots & \sigma_{pp}\mathbf{I}_n \end{bmatrix} = \sum_{p \times p} \otimes \mathbf{I}_n$$

• Since $\operatorname{var}\left\{ \begin{array}{l} \mathbf{e} \\ _{np\times 1} \end{array} \right\}$ does *not* take the form $\sigma^{2}\mathbf{I}_{np}$, the B.L.U.E. for $\boldsymbol{\beta}$ will be the G.L.S. estimator for $\boldsymbol{\beta}$ (which depends on the unknown $\boldsymbol{\Sigma}$) BUT...

- $= \left(\mathbf{I}_p \otimes (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}' \right) \text{ vec } \mathbf{Y} \qquad \text{[by prop (a)]}$ $\Rightarrow \hat{\mathbf{B}} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y} \qquad \text{[by prop (b)]}$
- O.L.S. = G.L.S. is BLUE!
 (Even when Σ is unknown)

- Despite the fact that the p variables y_{i1,...,yip} are correlated, all the info needed to estimate β_{.i} is found in y_{.i} only. That is, r×1
 multivariate regression coefficient matrix Â_{r×p} can be formed by pasting together the p columns from p separate univariate regressions (as long as each regression uses the same predictors X_{n×r})
- But all $\hat{\boldsymbol{\beta}}_{ij}$ in **B** are intercorrelated ... must take multivariate approach to inference

Assumptions for Multivariate Multiple Regression:

Model is: $\mathbf{Y}_{n \times p} = \mathbf{X}_{n \times rr \times p} + \mathbf{\Xi}_{n \times p}$ or vec $\mathbf{Y} = (\mathbf{I} \otimes \mathbf{X}) \underbrace{\operatorname{vec} \mathbf{B}}_{=``\boldsymbol{\beta}''} + \operatorname{vec} \mathbf{\Xi}$

Assumptions:

1.
$$E{Y} = XB \text{ or } E{\Xi} = 0$$

2.
$$\operatorname{var}\{\operatorname{vec} \mathbf{Y}\} = \operatorname{var}\{\operatorname{vec} \mathbf{\Xi}\} = \mathbf{\Sigma} \otimes \mathbf{I}_n$$

(That is,
$$\operatorname{var}\{\mathbf{y}_{i}\} = \boldsymbol{\Sigma}$$
 for all $i = 1, \dots, n$ and
 $\operatorname{cov}\{\mathbf{y}_{i}, \mathbf{y}_{j}\} = \underset{p \times p}{\mathbf{0}}$ for all $i \neq j$)

Some properties of $\hat{\mathbf{B}} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y}$

1. $\hat{\mathbf{B}}$ is called the "least squares estimator" because it "minimizes" $\mathbf{E}_{p \times p} = \hat{\mathbf{\Xi}}' \hat{\mathbf{\Xi}} = (\mathbf{Y} - \mathbf{X}\hat{\mathbf{B}})'(\mathbf{Y} - \mathbf{X}\hat{\mathbf{B}})$ (where \mathbf{E} is an "error matrix" analogous to the \mathbf{E} matrix in MANOVA). Matrix is "minimized" in several senses:

(a) Let
$$\tilde{\mathbf{B}}$$
 be some other estimate of **B**.
Then,

$$(\mathbf{Y} - \mathbf{X}\tilde{\mathbf{B}})'(\mathbf{Y} - \mathbf{X}\tilde{\mathbf{B}}) = (\mathbf{Y} - \mathbf{X}\hat{\mathbf{B}})'(\mathbf{Y} - \mathbf{X}\hat{\mathbf{B}}) + \mathbf{A}$$

where \mathbf{A} is a positive definite matrix

(b)
$$\mathbf{B} = \hat{\mathbf{B}}$$
 minimizes $\operatorname{tr}\{(\mathbf{Y} - \mathbf{X}\mathbf{B})'(\mathbf{Y} - \mathbf{X}\mathbf{B})\}$

(c)
$$\mathbf{B} = \hat{\mathbf{B}}$$
 minimizes $|(\mathbf{Y} - \mathbf{X}\mathbf{B})'(\mathbf{Y} - \mathbf{X}\mathbf{B})|$

2. Let $\hat{\mathbf{Y}} = \mathbf{X}\hat{\mathbf{B}} = \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y}$ be predicted values and $\hat{\mathbf{\Xi}} = \mathbf{Y} - \hat{\mathbf{Y}} = (\mathbf{I} - \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}')\mathbf{Y}$ be residuals Then

(a) Residuals are perpendicular to the columns of \mathbf{X}

$$\rightarrow \mathbf{X}' \hat{\mathbf{\Xi}} = \mathbf{X}' (\mathbf{I} - \mathbf{X} (\mathbf{X}' \mathbf{X})^{-1} \mathbf{X}') \mathbf{Y} = \mathbf{0}_{r \times p}$$

(b) Residuals are perpendicular to the columns of $\hat{\mathbf{Y}}$

$$\hat{\mathbf{Y}} = \hat{\mathbf{B}}' \mathbf{X}' (\mathbf{I} - \mathbf{X} (\mathbf{X}' \mathbf{X})^{-1} \mathbf{X}') \mathbf{Y} = \mathbf{0}_{p \times p}$$

(c) Total sum of squares and cross products ("Total SS and CP") can be partitioned as:

3. $\hat{\mathbf{B}}$ is B.L.U.E. for **B**

- Minimum variance estimator among all unbiased estimators
- If columns of $\boldsymbol{\Xi}$ are normal, $\hat{\mathbf{B}}$ is B.U.E.

4. Elements of $\hat{\mathbf{B}}$ are intercorrelated

$$\mathbf{B}_{r \times p} = \begin{bmatrix} \hat{\beta}_{01} & \hat{\beta}_{02} & \cdots & \hat{\beta}_{0p} \\ \hat{\beta}_{11} & \hat{\beta}_{12} & \cdots & \hat{\beta}_{1p} \\ \vdots & \vdots & \ddots & \vdots \\ \hat{\beta}_{q1} & \hat{\beta}_{q2} & \cdots & \hat{\beta}_{qp} \end{bmatrix}$$

- $\hat{\beta}$ s in each row are correlated due to correlation in **y**
- $\hat{\beta}$ s in each column are correlated due to correlation in **x**

5. Unbiased estimate of $var(\mathbf{y}_{i.}) = var(\mathbf{e}_{i.}) = \boldsymbol{\Sigma}$.

$$\mathbf{S} = \frac{\mathbf{E}}{n-q-1} = \frac{(\mathbf{Y} - \mathbf{X}\hat{\mathbf{B}})'(\mathbf{Y} - \mathbf{X}\hat{\mathbf{B}})}{n-q-1} = \frac{\hat{\mathbf{\Xi}}'\hat{\mathbf{\Xi}}}{n-q-1}$$
$$= \frac{1}{n-q-1}(\mathbf{Y}'\mathbf{Y} - \hat{\mathbf{B}}'\mathbf{X}'\mathbf{Y})$$

Proof:

$$E\{\hat{\Xi}_{n \times p}\} = E\{\mathbf{Y} - \mathbf{X}\hat{\mathbf{B}}\}$$
$$= E\{(\mathbf{I}_n - \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}')\mathbf{Y}\}$$
$$= (\mathbf{I}_n - \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}') E\{\mathbf{X}\mathbf{B} + \mathbf{\Xi}\}$$
$$= (\mathbf{I}_n - \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}') E\{\mathbf{\Xi}\}$$
$$= \underbrace{\mathbf{0}}_{n \times p}$$

$$E\{\hat{\mathbf{e}}'_{\cdot i}\hat{\mathbf{e}}_{\cdot j}\} = E\left\{\left[(\mathbf{I}_{n} - \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}')\mathbf{y}_{\cdot i}\right]'\left[(\mathbf{I}_{n} - \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}')\mathbf{y}_{\cdot j}\right]\right\}$$

$$= E\left\{\left[(\mathbf{I}_{n} - \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}')\mathbf{e}_{\cdot i}\right]'\left[(\mathbf{I}_{n} - \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}')\mathbf{e}_{\cdot j}\right]\right\}$$

$$= E\left\{\mathbf{e}'_{\cdot i}\underbrace{\left(\mathbf{I}_{n} - \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\right)\left(\mathbf{I}_{n} - \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\right)}_{\mathbf{I}_{n} - \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'}\right]$$

$$= E\left\{\operatorname{tr}\left\{\left(\mathbf{I}_{n} - \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\right)\mathbf{e}_{\cdot j}\mathbf{e}'_{\cdot i}\right\}\right\}$$

$$= \operatorname{tr}\left\{\left(\mathbf{I}_{n} - \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\right)\underbrace{E\left\{\mathbf{e}_{\cdot j}\mathbf{e}'_{\cdot i}\right\}\right\}$$

$$= \sigma_{ij}\operatorname{tr}\left\{\left(\mathbf{I}_{n} - \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\right)\right\}$$

$$= \sigma_{ij}\left(\operatorname{tr}\left\{\mathbf{I}_{n}\right\} - \operatorname{tr}\left\{\mathbf{X}'\mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\right\}\right)$$

$$= \sigma_{ij}\left(n - (q + 1)\right)$$

$$\therefore E\left\{\frac{1}{n-q-1}\hat{\Xi}'\hat{\Xi}\right\} = \Sigma = (\sigma_{ij})$$

Note: If **X** is not full rank, we can obtain similar results based on $\hat{\mathbf{B}} = (\mathbf{X}'\mathbf{X})^{-}\mathbf{X}'\mathbf{Y}...$ we'll leave that discussion for "linear models"! Another note: $\widehat{var}\left\{ \begin{array}{c} \mathbf{e} \\ np \times 1 \end{array} \right\} = \left(\frac{1}{n-q-1}\mathbf{E} \right) \otimes \mathbf{I}_{n}$ and $E\left\{ \left(\frac{1}{n-q-1}\mathbf{E} \right) \otimes \mathbf{I}_{n} \right\} = \mathbf{\Sigma} \otimes \mathbf{I}_{n}$ 6. Variance of $\hat{\boldsymbol{\beta}}$ (i.e., $\operatorname{var}\{\operatorname{vec} \hat{\mathbf{B}}\})$ $\operatorname{var}\left\{ \begin{array}{c} \hat{\boldsymbol{\beta}} \\ np \times 1 \end{array} \right\} = \operatorname{var}\left\{ \left[(\mathbf{I} \otimes \mathbf{X})' (\mathbf{I} \otimes \mathbf{X}) \right]^{-1} (\mathbf{I} \otimes \mathbf{X})' \operatorname{vec} \mathbf{Y} \right\}$

$$= \begin{bmatrix} \mathbf{I}_p \otimes (\mathbf{X}'\mathbf{X})^{-1} \mathbf{X}' \end{bmatrix} \operatorname{var} \{\operatorname{vec} \mathbf{Y}\} \begin{bmatrix} \mathbf{I}_p \otimes (\mathbf{X}'\mathbf{X})^{-1} \mathbf{X}' \end{bmatrix}'$$

$$= \begin{bmatrix} \mathbf{I}_p \otimes (\mathbf{X}'\mathbf{X})^{-1} \mathbf{X}' \end{bmatrix} \operatorname{var} \{\operatorname{vec} \mathbf{\Xi}\} \begin{bmatrix} \mathbf{I}_p \otimes (\mathbf{X}'\mathbf{X})^{-1} \mathbf{X}' \end{bmatrix}'$$

$$= \begin{bmatrix} \mathbf{I}_p \otimes (\mathbf{X}'\mathbf{X})^{-1} \mathbf{X}' \end{bmatrix} (\mathbf{\Sigma} \otimes \mathbf{I}_n) \begin{bmatrix} \mathbf{I}_p \otimes \mathbf{X} (\mathbf{X}'\mathbf{X})^{-1} \end{bmatrix}$$

$$= \mathbf{\Sigma} \otimes \begin{bmatrix} (\mathbf{X}'\mathbf{X})^{-1} \mathbf{X}' \mathbf{I}_n \mathbf{X} (\mathbf{X}'\mathbf{X})^{-1} \end{bmatrix}$$

$$= \mathbf{\Sigma} \otimes (\mathbf{X}'\mathbf{X})^{-1}$$

Notes:

(a)
$$\widehat{\operatorname{var}}\{\hat{\boldsymbol{\beta}}\} = \overbrace{\left(\frac{1}{n-q-1}\mathbf{E}\right)}^{\mathbf{s},\mathbf{s}} \otimes (\mathbf{X}'\mathbf{X})^{-1}$$

(b) $\operatorname{cov}\{\hat{\boldsymbol{\beta}}_{\cdot i}, \hat{\boldsymbol{\beta}}_{\cdot j}\} = \sigma_{ij}(\mathbf{X}'\mathbf{X})^{-1}$
(c) $\operatorname{cov}\{\hat{\boldsymbol{\beta}}_{\cdot i}, \hat{\mathbf{e}}_{\cdot j}\} = \sum_{r \times 1 \ n \times 1}^{\operatorname{cov}} \left\{ (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}_{\cdot i}, \left(\mathbf{I}_n - \mathbf{X}\left(\mathbf{X}'\mathbf{X}\right)^{-1}\mathbf{X}'\right)\mathbf{y}_{\cdot j} \right\}$
 $= \operatorname{cov}\left\{ (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{e}_{\cdot i}, \left(\mathbf{I}_n - \mathbf{X}\left(\mathbf{X}'\mathbf{X}\right)^{-1}\mathbf{X}'\right)\mathbf{e}_{\cdot j} \right\}$
 $= (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\sigma_{ij}\mathbf{I}_n\left(\mathbf{I}_n - \mathbf{X}\left(\mathbf{X}'\mathbf{X}\right)^{-1}\mathbf{X}'\right)$
 $= \sigma_{ij}\left[(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}' - (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{X}\left(\mathbf{X}'\mathbf{X}\right)^{-1}\mathbf{X}' \right]$
 $= \mathbf{0}_{r \times n}$

(d) Estimating mean of $\mathbf{x}'_{0} \mathbf{B}_{1 \times r^{r \times p}}$ • $\mathbf{x}_0' \hat{\mathbf{B}}$ is an unbiased estimator of $\mathbf{x}_0' \mathbf{B}$ • $\operatorname{var}\{\mathbf{x}_{0}'\hat{\mathbf{B}}\} = \Sigma(\underbrace{\mathbf{x}_{0}'(\mathbf{X}'\mathbf{X})^{-1}\mathbf{x}_{0}}_{\operatorname{scalar}})$ (e) Estimating a new observation \mathbf{y}_0 using \mathbf{x}_0 $\mathbf{y}_0' = \mathbf{x}_0' \mathbf{B} + \mathbf{e}_0'$ • $\mathbf{x}_0' \hat{\mathbf{B}}$ is an unbiased estimator of \mathbf{y}_0 • $\operatorname{var}\{\mathbf{y}_0' - \mathbf{x}_0'\hat{\mathbf{B}}\} \leftarrow$ "forecast error variance" - Note that $\operatorname{cov}\{\mathbf{y}_{0}', \mathbf{x}_{0}'\hat{\mathbf{B}}\} = \operatorname{cov}\{\mathbf{e}_{0}', \mathbf{x}_{0}'(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'(\mathbf{X}\mathbf{B} + \mathbf{\Xi})\}$

$$= \operatorname{cov} \left\{ \mathbf{e}'_{0}, \mathbf{x}'_{0} (\mathbf{X}'\mathbf{X})^{-1} \mathbf{X}' \mathbf{\Xi} \right\}$$
$$= \underset{p \times p}{\mathbf{0}} \quad \operatorname{since} \, \mathbf{e}'_{0} \text{ is indep. of } \mathbf{\Xi} = \begin{bmatrix} \mathbf{e}'_{1.} \\ \vdots \\ \mathbf{e}'_{n.} \end{bmatrix}$$

So

$$\operatorname{var}\{\mathbf{y}_{0}' - \mathbf{x}_{0}'\hat{\mathbf{B}}\} = \operatorname{var}\{\mathbf{y}_{0}'\} + \operatorname{var}\{\mathbf{x}_{0}'\hat{\mathbf{B}}\} - 2 \operatorname{cov}\{\mathbf{y}_{0}', \mathbf{x}_{0}'\hat{\mathbf{B}}\}$$

$$= \mathbf{\Sigma} + \mathbf{\Sigma} \cdot \left(\mathbf{x}_{0}'(\mathbf{X}'\mathbf{X})^{-1}\mathbf{x}_{0}\right) + \mathbf{0}$$

$$= \mathbf{\Sigma} \cdot \left[1 + \mathbf{x}_{0}'(\mathbf{X}'\mathbf{X})^{-1}\mathbf{x}_{0}\right]$$

7. MLE's of $\underset{r \times p}{\mathbf{B}}$ and Σ Thus far, we have assumed $E\{\mathbf{e}\} = \mathbf{0}$ and $\operatorname{var}\{\mathbf{e}\} = \Sigma \otimes \mathbf{I}_n$ $\uparrow_{\operatorname{vec}} \Xi$ If we assume:

$$\mathbf{e}_{np\times 1} \sim N_{np} \left(\mathbf{0}, \mathbf{\Sigma} \otimes \mathbf{I}_n \right)$$

then MLE's of ${\bf B}$ and ${\boldsymbol \Sigma}$ are

$$\hat{\mathbf{B}} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y}$$

and

$$\hat{\mathbf{\Sigma}}_{p imes p} = rac{1}{n} \hat{\mathbf{\Xi}}' \hat{\mathbf{\Xi}} = rac{1}{n} \mathbf{E}$$

where

$$\mathbf{E} \sim W_p(n-q-1, \mathbf{\Sigma})$$

Proof: omitted.

8. Model Corrected for Means Rewrite

$$\mathbf{Y} = \mathbf{X}_{n imes r} \mathbf{B} + \mathbf{\Xi}$$

as

 $\mathbf{Y}_{c}_{n \times p} = \mathbf{X}_{c} \mathbf{B}_{c}_{n \times qq \times p} + \mathbf{\Xi} \text{ where } q = \# \text{ of predictors} = r - 1$

and

$$\mathbf{Y}_{c} = \begin{bmatrix} y_{11} - \bar{y}_{\cdot 1} & y_{12} - \bar{y}_{\cdot 2} & \cdots & y_{1p} - \bar{y}_{\cdot p} \\ \vdots & & \vdots \\ y_{n1} - \bar{y}_{\cdot 1} & y_{n2} - \bar{y}_{\cdot 2} & \cdots & y_{np} - \bar{y}_{\cdot p} \end{bmatrix}$$
$$\mathbf{X}_{c} = \begin{bmatrix} x_{11} - \bar{x}_{\cdot 1} & \cdots & x_{1q} - \bar{x}_{\cdot q} \\ \vdots & & \vdots \\ x_{n1} - \bar{x}_{\cdot 1} & \cdots & x_{nq} - \bar{x}_{\cdot q} \end{bmatrix}$$

Then
$$\hat{\mathbf{B}}_{c} = \mathbf{S}_{xx}^{-1} \mathbf{S}_{xy}$$

where $\mathbf{S} = \begin{bmatrix} \mathbf{S}_{yy} & \mathbf{S}_{yx} \\ \mathbf{S}_{xy} & \mathbf{S}_{xx} \end{bmatrix}$ is the sample covariance matrix of the
 $p + q$ variables $(y_{1}, \dots, y_{p}, x_{1}, \dots, x_{q})$
 $\hat{\mathbf{Y}} = \begin{bmatrix} \bar{y}_{\cdot 1} & \mathbf{1}_{n} & \cdots & \bar{y}_{\cdot p} & \mathbf{1}_{n} \end{bmatrix} + \mathbf{X}_{c} \hat{\mathbf{B}}_{c}$

Hypothesis Tests (assuming $\mathbf{e} \sim N_{np} \{ \mathbf{0}, \mathbf{\Sigma} \otimes \mathbf{I}_r \})$

 $H_0: \mathbf{B}_1 = \mathbf{0}$ (Test of overall regression)

where
$$\mathbf{B}_{r \times p} = \begin{bmatrix} \boldsymbol{\beta}_0' \\ \mathbf{B}_1 \end{bmatrix} \leftarrow 1 \times p$$
 vector of intercepts $\leftarrow q \times p$

Partition the total SS and CP matrix:

$$\mathbf{Y}_{p\ n\ n\ p}'\mathbf{Y} = \underbrace{\left(\mathbf{Y} - \mathbf{X}\hat{\mathbf{B}}\right)'\left(\mathbf{Y} - \mathbf{X}\hat{\mathbf{B}}\right)}_{=\mathbf{Y}'\mathbf{Y} - \hat{\mathbf{B}}'\mathbf{X}'\mathbf{Y} = \mathbf{E}} + \hat{\mathbf{B}}'\mathbf{X}'\mathbf{Y}$$

To avoid inclusion of $\beta'_0 = \mathbf{0}'$ as part of the null hypothesis, we subtract $n\bar{\mathbf{y}}\bar{\mathbf{y}}'$:

$$\underbrace{\mathbf{Y}'\mathbf{Y} - n\bar{\mathbf{y}}\bar{\mathbf{y}}'}_{\text{corrected total SS & CP}} = \underbrace{\mathbf{Y}'\mathbf{Y} - \hat{\mathbf{B}}'\mathbf{X}'\mathbf{Y}}_{=\sum_{p \neq p} + \sum_{p \neq p} + \underbrace{\hat{\mathbf{B}}'\mathbf{X}'\mathbf{Y} - n\bar{\mathbf{y}}\bar{\mathbf{y}}'}_{=\sum_{p \neq p} + \sum_{p \neq p} + \sum_{p \neq p} + \underbrace{\hat{\mathbf{B}}'\mathbf{X}'\mathbf{Y} - n\bar{\mathbf{y}}\bar{\mathbf{y}}'}_{=\sum_{p \neq p} + \sum_{p \neq p} + \sum_{p \neq p} + \underbrace{\hat{\mathbf{B}}'\mathbf{X}'\mathbf{Y} - n\bar{\mathbf{y}}\bar{\mathbf{y}}'}_{=\sum_{p \neq p} + \sum_{p \neq p} + \sum_{p \neq p} + \underbrace{\hat{\mathbf{B}}'\mathbf{X}'\mathbf{Y} - n\bar{\mathbf{y}}\bar{\mathbf{y}}'}_{=\sum_{p \neq p} + \sum_{p \neq p} + \sum_{p \neq p} + \underbrace{\hat{\mathbf{B}}'\mathbf{X}'\mathbf{Y} - n\bar{\mathbf{y}}\bar{\mathbf{y}}'}_{=\sum_{p \neq p} + \sum_{p \neq p} + \sum_{p \neq p} + \sum_{p \neq p} + \underbrace{\hat{\mathbf{B}}'\mathbf{X}'\mathbf{Y} - n\bar{\mathbf{y}}\bar{\mathbf{y}}'}_{=\sum_{p \neq p} + \sum_{p \neq p} + \sum_{p \neq p} + \underbrace{\hat{\mathbf{B}}'\mathbf{X}'\mathbf{Y} - n\bar{\mathbf{y}}\bar{\mathbf{y}}'}_{=\sum_{p \neq p} + \sum_{p \neq p} + \sum_{p \neq p} + \underbrace{\hat{\mathbf{B}}'\mathbf{X}'\mathbf{Y} - n\bar{\mathbf{y}}\bar{\mathbf{y}}'}_{=\sum_{p \neq p} + \sum_{p \neq p} + \sum_{p \neq p} + \underbrace{\hat{\mathbf{B}}'\mathbf{X}'\mathbf{Y} - n\bar{\mathbf{y}}\bar{\mathbf{y}}'}_{=\sum_{p \neq p} + \sum_{p \neq p} + \sum_{p \neq p} + \sum_{p \neq p} + \underbrace{\hat{\mathbf{B}}'\mathbf{X}'\mathbf{Y} - n\bar{\mathbf{y}}\bar{\mathbf{y}}'}_{=\sum_{p \neq p} + \sum_{p \neq p} + \sum_$$

$$\Lambda = \frac{|\mathbf{E}|}{|\mathbf{E} + \mathbf{H}|} = \frac{|\mathbf{Y}'\mathbf{Y} - \hat{\mathbf{B}}'\mathbf{X}'\mathbf{Y}|}{|\mathbf{Y}'\mathbf{Y} - n\bar{\mathbf{y}}\bar{\mathbf{y}}'|} \sim \Lambda_{p,\underbrace{q}_{r-1},\underbrace{n-q-1}_{n-r}}$$

- **H** is "large" when $\hat{\boldsymbol{\beta}}_{ij}$'s are large
- The 4 MANOVA statistics can be calculated as functions of the eigenvalues of $\mathbf{E}^{-1}\mathbf{H}, (\lambda_1, \dots, \lambda_s)$:

– Wilks':
$$\Lambda = \prod_{i=1}^{s} \frac{1}{1+\lambda_i}$$

- Roy's:
$$\theta = \lambda_1$$

– Pillai's Trace:
$$V = \sum_{i=1}^{s} \frac{\lambda_i}{1+\lambda_i}$$

- Lawley-Hotelling Trace:
$$U = \sum_{i=1}^{s} \lambda_i$$

 \rightarrow Critical values (and *p*-values) based on approximate *F*-distributions given on the MANOVA pages on these notes ... use:

$$s = \min(p, q)$$

$$m = \frac{1}{2}(|q - p| - 1)$$

$$N = \frac{1}{2}(n - q - p - 2)$$

• Essential dimensionality of $\underbrace{\mathbf{E}^{-1}\mathbf{H}}$ is the essential dimensionality of

 $p \times p$

B₁. For example, a single non-zero eigenvalue (i.e., rank of B_1 is 1) $_{q \times p}$ could be due to several causes:

1. \mathbf{B}_1 has only one nonzero row

 \Rightarrow only one of the x's predicts the y's

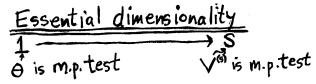
- 2. \mathbf{B}_1 has only one nonzero column \Rightarrow only one of the y's is predicted by the x's
- 3. All of the rows of \mathbf{B}_1 are linear combinations of each other $\Rightarrow x$'s act alike in predicting y's

[or, in other words]

All of the columns of \mathbf{B}_1 are linear combinations of each other

 \Rightarrow only one dimension in the y's as they relate to x's

• "Essential dimensionality" of $\mathbf{E}^{-1}\mathbf{H}$ is number of substantially non-zero eigenvalues and takes value less than or equal to $s = \min(p, q)$



• Λ can also be calculated from the partitioned sample covariance matrix of $(y_1, \ldots, y_p, x_1, \ldots, x_q)$

$$\mathbf{S}_{(p+q) imes(p+q)} = egin{bmatrix} \mathbf{S}_{yy} & \mathbf{S}_{yx} \ _{p imes p} & _{p imes q} \ \mathbf{S}_{xy} & _{p imes q} \ \mathbf{S}_{xy} & \mathbf{S}_{xx} \ _{q imes p} & _{q imes q} \ \end{bmatrix}$$

using

$$\frac{|\mathbf{S}|}{|\mathbf{S}_{xx}||\mathbf{S}_{yy}|}$$

which is essentially a test of independence between ${\bf y}$ and ${\bf x}$ since

Independence of \mathbf{y} and $\mathbf{x} \Rightarrow |\mathbf{S}| = |\mathbf{S}_{yy}||\mathbf{S}_{xx}|$

$H_0: \mathbf{B}_a = \mathbf{0}$ Tests on a subset of the *x*'s

Hypothesis states that the y's do not depend on the last h of the x's. That is,

$$H_0: \mathbf{B}_{\mathrm{add}} = \mathbf{0}$$

where

$$\mathbf{B}_{r \times p} = \begin{bmatrix} \mathbf{B}_{\text{red}} \\ \mathbf{B}_{\text{add}} \end{bmatrix} \begin{array}{l} \leftarrow (r-h) \times p \\ \leftarrow h \times p \end{array}$$

Compare SS and CP matrix for full and reduced models:

 $\mathbf{H}_{\text{diff}} = \hat{\mathbf{B}}' \mathbf{X}' \mathbf{Y} - \hat{\mathbf{B}}'_r \mathbf{X}'_r \mathbf{Y} \quad \leftarrow \text{difference in regression SS and CP}$

and

$$\mathbf{E}_{\text{full}} = \mathbf{Y}'\mathbf{Y} - \hat{\mathbf{B}}'\mathbf{X}'\mathbf{Y} \quad \leftarrow \mathbf{E} \text{ matrix based on full model}$$

Then

$$\begin{split} \Lambda_{x_{q-h+1},\cdots,x_{q}|x_{1},\cdots,x_{q-h}} &= \frac{|\mathbf{E}_{\text{full}}|}{|\mathbf{E}_{\text{full}} + \mathbf{H}_{\text{diff}}|} = \frac{|\mathbf{E}_{\text{full}}|}{|\mathbf{E}_{\text{red}}|} \\ &= \frac{|\mathbf{Y}'\mathbf{Y} - \hat{\mathbf{B}}'\mathbf{X}'\mathbf{Y}|}{|\mathbf{Y}'\mathbf{Y} - \hat{\mathbf{B}}'_{\text{red}}\mathbf{X}'_{\text{red}}\mathbf{Y}|} \\ &\sim \Lambda_{p,h,n-q-1} \\ &\uparrow \\ &\# \text{ of } x \text{s}} \end{split}$$

• Note:

$$\begin{split} \Lambda_{x_{q-h+1},\cdots,x_{q}|x_{1},\cdots,x_{q-h}} &= \frac{\left(\frac{|\mathbf{Y}'\mathbf{Y} - \hat{\mathbf{B}}'\mathbf{X}'\mathbf{Y}|}{|\mathbf{Y}'\mathbf{Y} - n\bar{\mathbf{y}}\bar{\mathbf{y}}'|}\right)}{\left(\frac{|\mathbf{Y}'\mathbf{Y} - \hat{\mathbf{B}}'_{\text{red}}\mathbf{X}'_{\text{red}}\mathbf{Y}|}{|\mathbf{Y}'\mathbf{Y} - n\bar{\mathbf{y}}\bar{\mathbf{y}}'|}\right)} \\ &= \frac{\Lambda_{\text{full}}}{\Lambda_{\text{red}}} \end{split}$$

 \rightarrow makes full vs. reduced testing simple to carry out

• Note: θ , V, and U can be calculated from eigenvalues of $\mathbf{E}_{\text{full}}^{-1} \mathbf{H}_{\text{diff}}$ with

$$s = \min(p, h)$$
$$m = \frac{1}{2}(|h - p| - 1)$$
$$N = \frac{1}{2}(n - h - p - 2)$$

Subset Selection

Finding a subset of the x's to include in a model

• Forward Selection

 $({\rm Step}\ 1)$

Start with

$$\hat{\mathbf{B}}_{i} = \begin{bmatrix} \hat{\boldsymbol{\beta}}_{01} & \hat{\boldsymbol{\beta}}_{02} & \cdots & \hat{\boldsymbol{\beta}}_{0p} \\ \hat{\boldsymbol{\beta}}_{i1} & \hat{\boldsymbol{\beta}}_{i2} & \cdots & \hat{\boldsymbol{\beta}}_{ip} \end{bmatrix}$$

and calculate

$$\Lambda_{x_i} = \frac{|\mathbf{Y}'\mathbf{Y} - \hat{\mathbf{B}}'_i\mathbf{X}'\mathbf{Y}|}{|\mathbf{Y}'\mathbf{Y} - n\bar{\mathbf{y}}\bar{\mathbf{y}}'|} \sim \Lambda_{p,1,n-2}$$

for i = 1, ..., q. Add the x_i that minimizes Λ_{x_i} (as long as $\Lambda_{x_i} < \Lambda_{\alpha, p, 1, n-2}$ — stop otherwise)

(Step j + 1, j = 1, 2, ...)

Let x_1, \ldots, x_j be the variables added in previous steps. Calculate

$$\Lambda_{x_i|x_1,\dots,x_j} \sim \Lambda_{p,1,n-j-1}$$

for all x_i among the q - j remaining candidate variables. For the x_i that minimizes $\Lambda_{x_i|x_1,...,x_j}$:

- add x_i if $\Lambda_{x_i|x_1,...,x_j} < \Lambda_{\alpha,p,1,n-j-1}$
- stop the procedure if $\Lambda_{x_i|x_1,...,x_j} > \Lambda_{\alpha,p,1,n-j-1}$
- Backward Elimination

Start with all x's and delete one at a time until the least valuable remaining x is significant. For the m remaining x's after a given step, find the x_i maximizing

$$\Lambda_{x_i|x_1,\dots,x_{i-1},x_{i+1},\dots,x_m} \sim \Lambda_{p,1,n-m-1}$$

- drop x_i if $\Lambda_{x_i|x_1,\dots,x_{i-1},x_{i+1},\dots,x_m} > \Lambda_{\alpha,p,1,n-m-1}$
- stop the procedure if x_i if $\Lambda_{x_i|x_1,\dots,x_{i-1},x_{i+1},\dots,x_m} < \Lambda_{\alpha,p,1,n-m-1}$

- Stepwise
 - Add most significant candidate x_i if partial Λ is less than critical value
 - Then, remove least significant selected x_i if partial Λ is greater than critical value
- Best Subsets

Choose "best" subset of size ℓ , for $\ell = 1, \ldots, q$, with respect to some criterion (e.g., a multivariate extension of Mallow's C_p , or $tr{S}$, etc.)

After selecting a subset of the x's, subset of y's may be selected using "stepwise discriminant" approach . . . to be discussed later.

ex chemical reaction data

How are the responses $(y_1, y_2, \text{ and } y_3)$ affected by the inputs $(x_1, x_2, \text{ and } x_3)$?

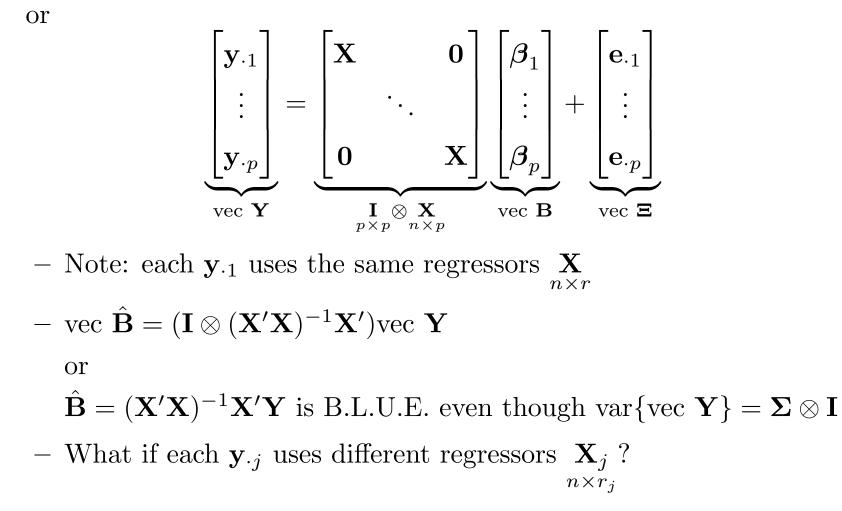
- $y_1 = \%$ of unchanged starting material
- $y_2 = \%$ converted to the desired product
- $y_3 = \%$ of unwanted by-product
- $x_1 =$ temperature
- $x_2 = \text{concentration}$
- $x_3 = time$
- Regress **y** on **x** to obtain $\hat{\mathbf{B}}$ and test $\mathbf{B}_1 = 0$, where $\mathbf{B} = \begin{bmatrix} \boldsymbol{\beta}_0' \\ \mathbf{B}_1 \end{bmatrix}$.
- Determine what the eigenvalues of $\mathbf{E}^{-1}\mathbf{H}$ reveal about the essential rank of $\hat{\mathbf{B}}_1$ and the power of the 4 ("MANOVA") statistics. NOTE: "MTEST/PRINT DETAILS" gives eigenvalues of $(\mathbf{E} + \mathbf{H})^{-1}\mathbf{H}$ (ξ_1, \ldots, ξ_s) and $\xi_i = \frac{\lambda_i}{1 + \lambda_i}$, and $\lambda_i = \frac{\xi_i}{1 - \xi_i}$

• Check the significance of x_1x_2 , x_1x_3 , x_2x_3 , x_1^2 , x_2^2 , and x_3^2 adjusted for x_1 , x_2 , and x_3

III.C.ii Seemingly Unrelated Regressions (SUR)

• Standard multivariate regression:

$$\mathbf{Y} = \mathbf{XB} + \mathbf{\Xi}$$

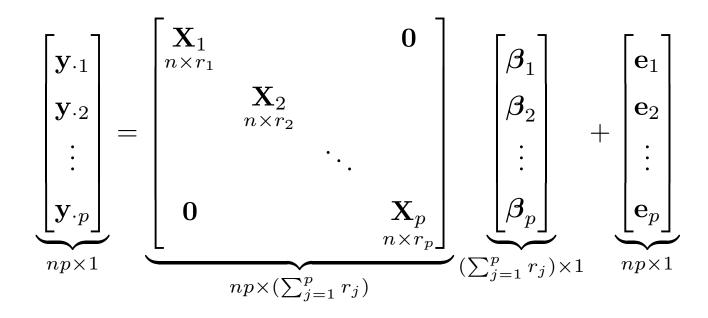


• SUR Model

$$\mathbf{y}_{j} = \mathbf{X}_{j} \boldsymbol{\beta}_{j} + \mathbf{e}_{j} \qquad j = 1, \dots, p$$

ex $\mathbf{y}_{.j}$ is the *j*th economic outcome for *n* regions and \mathbf{X}_j is the matrix of economic indicators (unemployment, housing starts, etc.) and the indicators used in the model are potentially different for each outcome—that is, $\mathbf{X}_j \neq \mathbf{X}_{j'}$

• Model assumptions:



OR

$$\mathbf{y}^* = \mathbf{X}^* \boldsymbol{\beta}^* + \mathbf{e}^*$$

$$\operatorname{cov}\{\mathbf{e}_i, \mathbf{e}_j\} = \sigma_{ij} \mathbf{I}_n \quad \leftarrow \text{ independent observations}$$

$$\Rightarrow \operatorname{var}\{\mathbf{e}^*\} = \sum_{p \times p} \otimes \mathbf{I}_n = \sum_{np \times np}^*$$

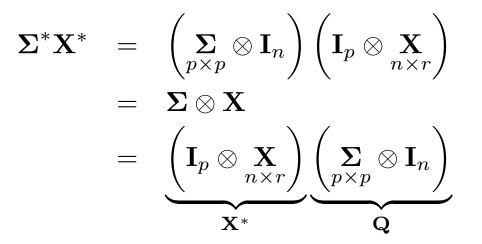
• OLS estimator

$$\hat{\boldsymbol{\beta}}_{\text{OLS}}^{*} = \left(\mathbf{X}^{*'}\mathbf{X}^{*}\right)^{-1}\mathbf{X}^{*'}\mathbf{y}^{*} = \begin{bmatrix} \left(\mathbf{X}_{1}^{\prime}\mathbf{X}_{1}\right)^{-1}\mathbf{X}_{1}^{\prime}\mathbf{y}_{\cdot 1} \\ \vdots \\ \left(\mathbf{X}_{p}^{\prime}\mathbf{X}_{p}\right)^{-1}\mathbf{X}_{p}^{\prime}\mathbf{y}_{\cdot p} \end{bmatrix} = \begin{bmatrix} \hat{\boldsymbol{\beta}}_{1,\text{OLS}} \\ \vdots \\ \hat{\boldsymbol{\beta}}_{p,\text{OLS}} \end{bmatrix}$$

is $\underline{\text{not}}$ BLUE in general

- Zyskind condition states that the OLS estimator is BLUE if and only if there exists a matrix **Q** such that $\Sigma^* \mathbf{X}^* = \mathbf{X}^* \mathbf{Q}$ * In standard multivariate regression, $\Sigma^* = \sum_{p \times p} \otimes \mathbf{I}_n$ and

 $\mathbf{X}^* = \mathbf{I}_p \otimes \mathbf{X}_{n \times r}$ and



Therefore, OLS is BLUE under standard multivariate regression assumptions

* In SUR case, there is no simple way of writing \mathbf{X}^* , and in general, there exists no \mathbf{Q} satisfying $\mathbf{\Sigma}^* \mathbf{X}^* = \mathbf{X}^* \mathbf{Q}$

• Use
$$\hat{\boldsymbol{\beta}}_{SUR}^* = \left(\mathbf{X}^* \boldsymbol{\Sigma}^{*-1} \mathbf{X}^* \right)^{-1} \mathbf{X}^* \boldsymbol{\Sigma}^{*-1} \mathbf{y}^*$$

III.C.iii Canonical Correlation Analysis

Objective: summarize the linear relationship between two groups of variables $\mathbf{y} = (y_1, \dots, y_p)$ and $\mathbf{x} = (x_1, \dots, x_q)$

- Neither ${\bf x}$ nor ${\bf y}$ considered "dependent"
- Multivariate extension of the squared multiple correlation coefficient (used to relate a single response y with \mathbf{x}).
- Consider a single random variable y and a random vector \mathbf{x} Recall

$$\operatorname{var}\left\{ \begin{bmatrix} \mathbf{y} \\ \mathbf{x} \end{bmatrix} \right\} = \mathbf{S} = \begin{bmatrix} \mathbf{S}_{yy} & \mathbf{S}_{yx} \\ \mathbf{S}_{xy} & \mathbf{S}_{xx} \end{bmatrix} \text{ if } \underbrace{=}_{=}^{p=1} \begin{bmatrix} s_{yy} & \mathbf{s}'_{yx} \\ \mathbf{s}_{x1} & \mathbf{s}'_{xx} \\ \mathbf{s}_{xy} & \mathbf{S}_{xx} \end{bmatrix}$$

and

$$\operatorname{corr}\left\{ \begin{bmatrix} \mathbf{y} \\ \mathbf{x} \end{bmatrix} \right\} = \mathbf{R} = \begin{bmatrix} \mathbf{R}_{yy} & \mathbf{R}_{yx} \\ \mathbf{R}_{xy} & \mathbf{R}_{xx} \\ \mathbf{q} \times q \end{bmatrix} \text{ if } \underbrace{p=1}_{=} \begin{bmatrix} 1 & \mathbf{r}'_{yx} \\ \mathbf{r}_{xy} & \mathbf{R}_{xx} \end{bmatrix}$$

Squared multiple correlation between y and (x_1, \ldots, x_q) is

$$R_{y|\mathbf{x}}^2 = \frac{\mathbf{s}_{yx}\mathbf{S}_{xx}^{-1}\mathbf{s}_{xy}}{s_{yy}} = \mathbf{r}_{yx}'\mathbf{R}_{xx}^{-1}\mathbf{r}_{xy}$$

where $R_{y|\mathbf{x}}^2$ is the maximum correlation between y and a linear combination of the x's

• Extending to the case with $\mathbf{y} = (y_1, \dots, y_p)$ and $\mathbf{x} = (x_1, \dots, x_q)$, a measure of association between \mathbf{y} and \mathbf{x} is

$$R_M^2 = |\mathbf{S}_{yy}^{-1} \mathbf{S}_{yx} \mathbf{S}_{xx}^{-1} \mathbf{S}_{xy}| = \prod_{i=1}^s r_i^2 \quad (s = \min(p, q))$$

where r_1^2, \ldots, r_s^2 are the eigenvalues of $\mathbf{S}_{yy}^{-1} \mathbf{S}_{yx} \mathbf{S}_{xx}^{-1} \mathbf{S}_{xy}$.

- R_M^2 too small and too heavily dependent on smallest eigenvalues.
- Instead, work directly with r_1^2, \ldots, r_s^2 called the "squared canonical correlations"

• Largest squared canonical correlation r_1^2 is the maximum squared correlation between a linear combination of **x** and a linear combination of **y**.

$$\sqrt{r_1^2} = \operatorname{corr}\{\underbrace{\mathbf{a}_1'\mathbf{y}}_{u_1}, \underbrace{\mathbf{b}_1'\mathbf{x}}_{v_1}\} = \max_{\mathbf{a}, \mathbf{b}} \operatorname{corr}\{\mathbf{a}'\mathbf{y}, \mathbf{b}'\mathbf{x}\}$$

 $-u_1 = \mathbf{a}'_1 \mathbf{y}$ and $v_1 = \mathbf{b}'_1 \mathbf{x}$ are the "first canonical variates"

- First *s* eigenvalues of $\underbrace{\mathbf{S}_{xx}^{-1}\mathbf{S}_{xy}\mathbf{S}_{yy}^{-1}\mathbf{S}_{yx}}_{q \times q}$ are same as first *s* eigenvalues

of $\underbrace{\mathbf{S}_{yy}^{-1}\mathbf{S}_{yx}\mathbf{S}_{xx}^{-1}\mathbf{S}_{xy}}_{p \times p}$, but eigenvectors are different.

$$- (\mathbf{S}_{yy}^{-1} \mathbf{S}_{yx} \mathbf{S}_{xx}^{-1} \mathbf{S}_{xy} - r^2 \mathbf{I}_p) \mathbf{a} = \mathbf{0}$$

* If $q < p$, only q of the eigenvectors \mathbf{a} are meaningful

$$(\mathbf{S}_{xx}^{-1}\mathbf{S}_{xy}\mathbf{S}_{yy}^{-1}\mathbf{S}_{yx} - r^{2}\mathbf{I}_{q})\mathbf{b} = \mathbf{0}$$

* If $p < q$, only p of the eigenvectors \mathbf{b} are meaningful

• The canonical correlations r_1, \ldots, r_s respond to the *s* pairs of canonical variates:

$$u_{1} = \mathbf{a}_{1}'\mathbf{y} \text{ and } v_{1} = \mathbf{b}_{1}'\mathbf{x}$$

$$u_{2} = \mathbf{a}_{2}'\mathbf{y} \text{ and } v_{2} = \mathbf{b}_{2}'\mathbf{x}$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$u_{s} = \mathbf{a}_{s}'\mathbf{y} \text{ and } v_{s} = \mathbf{b}_{s}'\mathbf{x}$$

$$the s nonredundant dimensions of the relationship (s = \min(p, q))$$

$$(s = \min(p, q))$$

 $-u_i$'s are uncorrelated (so are v_i 's)

$$-u_i$$
 uncorrelated with v_j for $i \neq j$

• If software requires a symmetric matrix to obtain eigenvalues and eigenvectors, use

$$\mathbf{S}_{xx}^{-1/2}\mathbf{S}_{xy}\mathbf{S}_{yy}^{-1}\mathbf{S}_{yx}\mathbf{S}_{xx}^{-1/2}$$

which has eigenvalues r_1^2, \ldots, r_s^2 and eigenvectors $\mathbf{S}_{xx}^{1/2} \mathbf{b}_i$ and

$$\mathbf{S}_{yy}^{-1/2}\mathbf{S}_{yx}\mathbf{S}_{xx}^{-1}\mathbf{S}_{xy}\mathbf{S}_{yy}^{-1/2}$$

which has eigenvalues r_1^2, \ldots, r_s^2 and eigenvectors $\mathbf{S}_{yy}^{1/2} \mathbf{a}_i$

• Importance of the relationship between u_i and v_i (that is, importance of r_i^2) can be judged by the relative size of λ_i (the eigenvalues of $\mathbf{E}^{-1}\mathbf{H}$):

$$\frac{\lambda_i}{\sum_{j=1}^s \lambda_j}$$

• $\mathbf{a}_i_{p \times 1} = \frac{1}{r_i} \mathbf{S}_{yy}^{-1} \mathbf{S}_{yx} \mathbf{b}_i_{p \times p \ p \times q \ q \times 1}$ $\mathbf{b}_i_{q \times 1} = \frac{1}{r_i} \mathbf{S}_{xx}^{-1} \mathbf{S}_{xy} \mathbf{a}_i_{q \times q \ q \times p}$ • When interpreting the canonical variates, we prefer to use standardized coefficient vectors

$$\mathbf{c}_{i} = \begin{bmatrix} s_{y_{1}} & 0 & \cdots & 0 \\ 0 & s_{y_{2}} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & s_{y_{p}} \end{bmatrix} \mathbf{a}_{i},$$

and

$$\mathbf{d}_{i} = \begin{bmatrix} s_{x_{1}} & 0 & \cdots & 0 \\ 0 & s_{x_{2}} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & s_{x_{q}} \end{bmatrix} \mathbf{b}_{i}$$

where $s_{y_i} = \sqrt{\operatorname{var}\{y_i\}}$ and $s_{x_i} = \sqrt{\operatorname{var}\{x_i\}}$.

- More simply, conduct analysis using $\mathbf{R}_{yy}^{-1}\mathbf{R}_{yx}\mathbf{R}_{xx}^{-1}\mathbf{R}_{xy}$ and $\mathbf{R}_{xx}^{-1}\mathbf{R}_{xy}\mathbf{R}_{yy}^{-1}\mathbf{R}_{yx}$ which have eigenvectors \mathbf{c}_i and \mathbf{d}_i , respectively, and have eigenvalues r_1^2, \ldots, r_s^2 .

- Properties of canonical correlations:
 - $-r_i^2$ invariant to change of scale on y's or x's
 - $-r_1$ exceeds the absolute value of the correlation between any y and any or all of the x's.
 - $-r_i^2 = R_{u_i|\mathbf{x}}^2 = R_{v_i|\mathbf{y}}^2 \text{ (where } R_{u_i|\mathbf{x}}^2 \text{ is the squared multiple correlation}$ between u_i and (x_1, \ldots, x_q))

Statistical Inference:

• H_0 : no linear relationship between y's and x's

or

$$H_0: \mathbf{B}_1_{q \times p} = \mathbf{0}$$

or

 H_0 : independence of **y** and **x**

• Test statistic:

$$\frac{|\mathbf{S}|}{|\mathbf{S}_{yy}||\mathbf{S}_{xx}|} = \frac{|\mathbf{R}|}{|\mathbf{R}_{yy}||\mathbf{R}_{xx}|} \sim \Lambda_{p,q,n-1-q}$$
$$\stackrel{q}{\equiv} \Lambda_{q,p,n-1-p}$$
since $\Lambda_{p,q,n-1-q} \stackrel{q}{=} \Lambda_{q,p,n-1-p}$

[An exact F test exists for $s = \min(p, q) \leq 2$, see Λ -to-F conversions in the MANOVA section]

- $\Lambda = \prod_{i=1}^{s} (1 r_i^2)$ is a function of r_1^2, \ldots, r_s^2 , as are Pillai's (V), Lawley-Hotelling (U), and Roy's Largest root (θ)
 - As strength of relationship between **x** and **y** increases, r_i^2 's increase and Λ decreases
 - Testing if the s canonical correlations (combined) are significant

- Note: If
$$p = 1, \Lambda = 1 - R_{y|\mathbf{x}}^2$$

- If test rejects, next consider how many r_i^2 's are significant
- H_0 : The canonical correlations r_m, \ldots, r_s are non-significant

$$\Lambda_m = \prod_{i=m}^s (1 - r_i^2) \sim \Lambda_{p-m+1,q-m+1,n-m-q}$$

or $\Lambda_{q-m+1,p-m+1,n-m-p}$
[since $\Lambda_{p,\nu_H,\nu_E} \stackrel{q}{=} \Lambda_{\nu_H,p,\nu_H+\nu_E-p}$]

– An approach: Check $\Lambda_2, \ldots, \Lambda_s$ to determine number of significant r_i^2 values.

Interpretation of canonical variates (e.g., $u_1 = \mathbf{a}'_1 \mathbf{y}$ and $v_1 = \mathbf{b}'_1 \mathbf{x}$)

Wish to assess the contribution of each variable to the canonical correlation r_i^2 .

- standardized coefficients
- correlations between y_1 and $u_j = \mathbf{a}'_j \mathbf{y}$
- Standardized coefficients

Use \mathbf{c}_i and \mathbf{d}_i to account for differences in scaling among the variables

- Absolute values of coefficients \mathbf{c}_i show contribution of each y_i in the presence of the other y_i 's.
- Add or remove y_i 's $\Rightarrow \mathbf{c}_i$ changes We <u>want</u> this property in multivariate analysis!!

- Correlations between y_i and $u_j = \mathbf{a}'_j \mathbf{y}$ (and between x_i and $v_j = \mathbf{b}'_j \mathbf{x}$)
 - More frequently used and widely claimed to yield more valid interpretation of canonical variates (a.k.a. "structure coefficients")
 - $-\operatorname{corr}\{y_i, u_j\}$ is "stable" (not dramatically different) if we add or remove y_i 's ... sounds nice, but it's not!

In fact, these correlations provide <u>no</u> information about the <u>multivariate</u> contribution of the variable y_i to the correlation structure. (Analogous to T_p^2 -test vs. p univariate *t*-tests.)

Rencher (1988, 1992) showed that

$$\prod_{j=1}^{s} (\operatorname{corr}\{y_i, u_j\})^2 r_j^2 = R_{y_i|\mathbf{x}}^2$$

where $R_{y_i|\mathbf{x}}^2$ is the multiple correlation between y_i and (x_1, \ldots, x_q)

- Although $\operatorname{corr}\{y_i, u_j\}$ might seem to quantify the importance of y_i in a multivariate relationship with **x** in the presence of the other y variables, it summarizes only a univariate relationship.
- ex chemical reaction data
 - ? How many r_i^2 's are necessary?
 - ? Interpret u_1 and v_1 .
 - Recall $\sqrt{R_{x_i|\mathbf{y}}^2} = \sqrt{\sum_{j=1}^3 (\operatorname{corr}\{x_i, v_1\})^2 r_j^2}.$
 - First canonical correlation is mostly due to relationship of: temperature and concentration (suppressed by x_1x_2 , and to a lesser degree x_1x_3 and x_1^2) with: % changed.

INPUTS		d_{1i}	$\operatorname{corr}\{x_i, v_1\}$	$\sqrt{R_{x_i \mathbf{y}}^2}$
$x_1 = $ temperature	**	5.01	.69	.69
$x_2 = \text{concentration}$	**	5.86	.23	.24
$x_3 = time$		1.65	.45	.51
$x_{1}x_{2}$	**	-3.92	.41	.43
x_1x_3	*	-2.30	.54	.58
x_2x_3		0.53	.45	.48
x_{1}^{2}	*	-2.67	.69	.69
x_{2}^{2}		-1.23	.23	.23
x_{3}^{2}		0.57	.42	.47

YIELDS		c_{1i}	$\operatorname{corr}\{y_i, u_1\}$	$\sqrt{R_{y_i \mathbf{x}}^2}$
$y_1 = \%$ unchanged	**	-1.54	996	.987
$y_2 = \%$ converted		-0.21	.64	.92
$y_3 = \%$ by-product		-0.47	.85	.91