II1I. Multivariate Statistical Inference

Why use a multivariate approach when conducting tests on p variables?

1. Type I error protection

E X | p =10 univariate tests at a = .05

If variables are independent,
Pr{at least one rejection}
= 1 — Pr{all 10 tests “accept”}
=1 - (.95)10 = 40
In practice, the overall (“experimentwise”) Type I

error rate will fall in what range??

2. Power

Multivariate test is more powerful in many cases.

E X | All p univariate tests fail to reject, but

multivariate test is significant due to combination of

small effects on some variables.

3. Understanding variables acting in combination.
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A.i. Hotelling’s T*

First consider univariate test of Hy : = po vs. Hy : pt # g when o is
known. (Consider only two-sided tests, since one-sided don’t readily

generalize for p > 1)

Test statistic using r.s. (x1,...,Zy):
T — [
z = ~ N(0,1) under H
oy ~ MO 0
or
2? = square of standardized distance

o

_ 2
= n(x ,ug) ~ %7 under H



Multivariate generalization (¥ is known):

Test statistic using r.s. (x1,...

px1

o1
Ho2

Hop

VS. \H 1 F Ho
At least one p;
| is not equal to po;
, Xp):

22 =n(x - py) S HE - py) ~ Xz% under Hy



More frequently in practice, X is unknown.

e Univariate test statistic using r.s. (z1,...,25,):

_ 2
:I/’ PR
t2=n ( MO) ~ 12 under Hj

= /(T — po)(s*) (& — po)vn

= 30 (0,08 [250E]  [ 0.0%)]




Multivariate generalization (Hotelling’s T):

— / — —
T? =n(x —py) S™1 (X —py) ~ T]in_l under Hy
/]\
unbiased
estimate
of X

S —1
= (}_( — /,l,o), (ﬁ) (}_( — /,l,o) < “characteristic form”

0 N N
X and S inverse
are indep. sample
since they cov.
matrix
are based for X
on a r.s.
from MVN
mn — —\/ —].
B _ / Zz’:1(xi —X)(x; — X) _
= \/ﬁ(x — No) \/E(X — Ho)
N -~ ) ’n, e 1 g - v
N,(0,3) ~- ’ N,(0,%)

Wy(n —1,3)
random matrix
divided by d.f.

random vector random vector



30)bA | ¥I)3 49 @Y+ S=Pp of

N noI1pPpr

wmu_ 46. [

1n4a
vQIm S3swadul ] L=

M4 VDU ﬂsoto 2503 1o U! SAN v N
< - ®
N\
0001
oor
007
og &—U 0St
co (syaw1 on
4 001
muﬁ = @' 1 @ £99°1z 06
1 4 91T 08
YER'TT oL
064°€¢ 09
LEV'YT s
95T'sT se1°el 0s
9TE9C  LLY'EC I8L0T LITS81  L9LST  60VEl 3%
€8LLT  vIOPT 899°1T 06881 P9T9L  TILEY or
188°62  ISTIT €I16TT €TF6I  pH6OL  OVTH] 193
o0 fqq (5o’ 1 9CI'EE  TPL'BT ISLPT 861'1T  IE6Ll  T6H] 0
"o_ 7 POVE  LOV6Z TLTST SSSTIT VBUSI  L6OSI 6C
& N|o \ - ¢ £P0SE  6PI0E  BIRST 0S6'IT €9¥'81  L8TSI 8
QeZ "0f 40 F 9LI9E  $B60E 8IFIL 8BETL OLL'ST 96¥'S1 L
2 69VLE  TEGIE PIlLT SI8TT TGl 9ZLSI 97
1968  CIOEE 168LT LIVET T6V6L  186S1 ST
00 ¢ gl 40 66900  SSTPE LLL'ST 6VOPT 0T6'61 S9TI| ¥T
/ z OSLTY  60L'SE 86L6T 6GSLPL €OFOT S8591 €2
w. %O \ - 0TSy  GIFLE SBEOEC 9LSST PS6OCT  SYE9I w
9015 “s0° PRI'SY  EOV6E PREIE  SISOT 8BS IT  9SCLI 17
ML\ PSEIS  OFGIP PSOYE TYILT VIETT 8I8L1 0T
L8G9  £TOSY 809 CL6'ST 681ET  SLESI 6!
oo’ (sq’ o9vLT9  OE6'8Y T6S8E 06S0f 6ITVT LIDGI 81
L. LTVIL IpObS  SLL'IP  8BSTE  L9VST  TBL6I L1
&%. \ - 121'e8 98609 ZE6'Sh  LIISE S00LT 90L0T 91
~ o0g ) ‘g0’ 66V 101  LOGOL TLSIS SIVSE SS6'8T SHIT St
Z \N. T8STE1  6L0°98 <CTI96S 88Ty S8V IE  ISTET vi
TPRE6L  9LOIII BLYIL TET6Y 1I6PE  SpI'ST <1
_&m 1TVISE  L96'I91 TIST6 €688 $9L6E OSYLT 4|
$LL'9901 908067 £O6'TEN 880°SL €THLP SOTIE i
. LICEIS €LYSEC 6V9901 €0P'65 1959¢ ol
NUW Juso.&Ls 9CE'L69 TTY98I TOTES ESHSY 6
068°1vS 0SO'Erl 19529 8
o.w. N.H. \,o.._\ 0T6'SOv  £51°S01 L
96 9
_owzaeu.y 240 (< 8z .
§o San|on AvbAv] ¢
‘Savardu d sy @ ¢
I $00
ol=d g=d g=d (=d 9=d ¢=d y=d g¢=d g=d =g « ‘wopsuy
Jo saaflag
uounQLISI L S 3ulfjaI0H Jo suleg aBwuanaag sadldn Ly qul

n.N *_g
£, AN




Important properties of T2

1. Sometimes we refer to the subscripts for Tgﬂ/ distribution as

“dimension” and “df” (e.g., T(%m df)

2. Must have n > p
e Otherwise S is singular and 7 cannot be computed.
3. Degrees of freedom v for T? is same as for analogous univariate
t-test:
e v =n — 1 for one-sample test

e =n1 + ny — 2 for two-sample test

4. Alternative hypothesis is 2-sided (no such thing as “Hy : p > p,”)

e Critical region is one-tailed (reject for large values) since test

statistic is squared distance



v—p+1
5. Loptl

[Note: «L» i shorthand for the equivalence of the quantiles of two dist’ns]

2 4
Tp,v — FpaV—P—H

e So, p-value for T? test is

— 1
p-value = Pr{Fp,,,_pH > vopT T2}
vp

e Critical value for T2 test is

2 vp (n—1)p
6. T2 invariant under transformations of the form x = C x +d,

pXx1 pXp pX1
where C is nonsingular



7. T? is the likelihood ratio test (LRT) of Hg : = p
e Under Hy the likelihood is

1 1 )
L(MO? E) — (27_‘_)np/2‘2|n/2 exP 1 _5 Z(X’L _ l‘l’()),zJ 1(X’i _ IJ’O)
(T =1
1 (1 .
- et {5
\ i=1
Using Result 4.10 (again), we obtain
1 —np
"8 Liko D) = A eXp{ }
> 0> np n
(2m) 72 | X0l 2

where 33 = 1 5 i (Xi — Ho) (Xi — 1)’




e Recall

max p
L Y E — np 1 N eXp {—

=
=
D
—
oD
M>
|
S|~
Ez
£
|
b
£
I
&

“Wilks” Lambda” is rejected for small A or large T2

* T2 = (n—1)%0|'—(n—1)
* 2InA~ X,
where v = # of unrestricted parameters

and vy = # of parameters under H

ex | Turnips
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A.ii. Confidence Regions

e Confidence region R(X):
Set of possible values of 8 in ® based on X

e R(X) is 100(1 — a)% C.R. if, before the sample is selected
Pr{R(X) will cover the true 8} =1 — a.

e C.R. for pu [100(1 — )%]
fallp> n(x-p)S ' (x—p) <T7,.}

~

squared mult. distance from x

or {all p3n(x—p)'S™Hx—p) < 2L Fapvpi1}

11



e Axes of the ellipsoid (based on eigenvalues Aq,..., A\, and

eigenvectors ey, ..., e, of S):
iT\/f Ta27p7,/ along e;
Elongation of ellipsoid: \/\/3\\:;

N

12



Interest in C.1.’s for individual components of x or linear combination

a’x.

e Define z = a’x

2z~ Ny(a'p,a’Sa) = Ni(p,,0?)

e Sample statistics:

N
|

Q
e

s =a'Sa

Note: a; =1[0,1,0,...,0] will yield a}x = T3 and
as = [1,—1,0,...,0] implies that a,x = Z; — T2, etc.
e 100(1 — a)% C.I. for p, is

/
_ a’Sa ,
! “t-interval”

n
13



— Experimentwise Type I error rate (EER)

Pr {at least one C.I. “wrong” }
=1 — Pr{no C.I.’s are wrong}

=1-— (1 — Ck)p assuming independence of C.I.’s

ex| a=.05: EER for p=10is 1 — (.95)1Y = .40

e Rewrite t-interval as

(o 2
{all a'p > n(a (Z’Sa“)) < ti_l}

Is there a bound ¢? which can replace t2_; and defines a C.R. that

simultaneously contains a’u for all a??

14



e Preliminary result (2-50, JW)
For B p.d. and x# 0

pPXp

'd 2
max 29 _ gg-1q
x#0 X'Bx
with maximum attained when x = cB~!d,c # 0
 So, max LCm) (- )7 (x— p) = T°
with maximum at

a = cS'(x—p), c#0

“discriminant function”

15



— Simultaneously for all a, the interval

B a’Sa
a'x + /T2
7p71/ n

or

. vp a’Sa
ax+ Fopypi1—
VV — D 4 1 a,p,v—p+1 n

or when v=n—1

—1
a'x + (n=1p Fopn—pd’'Sa
n(n — p)

will contain a’u with probability 1 — «.

@ More conservative (wider) than t-interval

© Preserve EER< «

© Allows “data-snooping”
16
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If we're willing to specify a few linear combinations aq,...,a; before
collecting the data, we might consider using intervals based on the
Bonferroni inequality which are narrower than 7' intervals but still
protect EER for a finite set of l.c.’s.

Given C.I.’s for k l.c.’s ajp, ..., a,u,

e I;: event that " interval contains a/u

® P{EZC}:O&Z

Pr{all F;} = 1— Pr{at least one E}}
= 1-Pr{EfUE5U---UEL}

k
> 1-) Pr{Ef}
1=1

= 1—20@

17



SO,

— e c
k. ¢
€
& c
€3 .
E"l
e Usually, specify a; = ¢
a’Sa
a'x + ta n-1 “Bonferroni Interval”
n

18



Critical values for 95% C.1.’s for p1,..., ty

: p=5
hr— N
ot by Rt T
5 | 214 298 485 | 342 22.13
I |
25 1 2061 28 KO3 ! 3.7 .59
90 [2.027 271 372 '3.04 545

I

100 1.98 | 2.4> 347 293 5.07
{

!
200|197 ! 2.60 34D : 290 N9\

ew!] =7
&l r—=
] o(Bivariate COV\‘F(atlﬁVl‘f’-
r€,1\'0l1
J '}E rmtervals
| » Bonfercont
o é!k/,////_ rmtevveals
i .:El /'nfervqls&
8—. T/




Notes:

o Often useful to examine the discriminant function a = S™}(x — )

in
(o 2
maxn(a (X I’l’)) _ T2

a#0 a’Sa

e a indicates the relative contribution of the z’s to the separation of

the data from p,,

— Comparisons of ay,...,a, only informative when z’s are
commensurate (i.e., measured on the same scale with

comparable variances)

20



— If «’s are not commensurate, consider coefficients a7y, ..., a; that

are applicable to standard variables.

— Discriminant function in terms of standardized variables

r1 — Iy Ty, — X
* * P y o
Z:a1—+..._|_ap—
S1 Sp
instead of
Z=a1T1 + -+ apTy

OR

S11 0

1
a*=Dza where D =
] 0 Spp_

ex | Turnips

21



II1.B. Comparison of Several Mean Vectors

II1.B.i. Paired Observations

Let x1; and x9; be 2 p-variate responses for observation ¢ (¢ = 1,...,n)

ex | LaVerl’s SAT pre-class test grades and post-class grades

Pre-class grades:

x1; = (Quant = 640, Analyt = 610, Verbal = 490)

Post-class grades:

Xo; = (Quant = 680, Analyt = 620, Verbal = 560)

22



1. Calculate d; = x1; — X9;

2. Calculate

3

and

1=1

3. 2=nd'Sy'd~12, ,=02Pp
N~ N~

v v—p+1

[Note: “£» is shorthand for the equivalence of the quantiles of two dist’ns]

x Same follow-up analyses as in one-sample T test/intervals apply here

e Confidence regions/intervals

e Discriminant functions

23



Alternatively, think of each observation

X1 < pre-tests
X; =
2px1 X9; <— post-tests
_ X1
X —
2px1 X9
S11 Si2
S =
2px2p So1 Sao

Interest is in Cx;, where

1 0 —1

24




Note

di = CXZ'
d = Cx
S; = CSC’

and T2 = nx'C’'(CSC’)

—10x ~

25

T2

p,n—1

(n—1)p




An extension to a comparison of p treatments given to each subject

over time

Zi1 | < evaluation after day 1 dosage

Zi2 | < evaluation after day 2 dosage ,
X; = | 1=1,...,n

< evaluation after day p dosage

—1 1 o --- 0 0 M1 Mo — M1
O -1 1 --- 0 Of [pe 3 — 2
C p— p—
(p—1)xp
I 0 0 O —1 1_ Hp Hp — Hp—1

26



T? =n(Cx) (CSC') 'Cx ~ T | .4
(n-1-1)

49

(n —1— (p — 1) + 1)F(p—1),n—1—(p_1)_|_1

a (n—-Dp-1)
n—p+1

e.g., if comparing 3 days, we might use

C =
2%X3

—1
1

0 1

-2 1

< linear increase/decrease in response

< quadratic effect on response

e.g., if comparing 4 days, we might use

3

—1

< linear
< quadradic

< cubic



B.ii. Two-Sample Comparisons

Interest in p; — p, (difference in two population means).

Assumptions:
® X11,X12,...,X1pn, 1S ar.s. from N,(p;,3)
® X91,X292,...,Xan, 1S ar.s. from N,(ts, )

— Note that X1 = 3y = X
e The two samples are independent

In practice, we can relax these assumptions somewhat for large n.

1
Let <. — . o
e X; . ZXU, 1=1,2
71=1
1 &
S, = — Zl(xij %) (x5 — %), i=1,2
‘]:

28



Since (n1 —1)S; ~ Wy(n1 —1,%)
and (ng — 1)82 ~ Wp(’ng — ]., E)

(nl — 1)81 -+ (7?,2 — 1)82 ~ Wp(nl + No — 2, E)

A&

:(n1 —I—n2—2)Spg

— E{Spg} =9>

Since the two samples are independent

1 1
(}_(1 — )_(2) ~ Np (l’l’l — Mo, n—E + —2>

1 n2
and
11 !
T2 = [}_(1 — X9 — (l’l’l l,l,2)]/ [(— + _) Spﬁ] [}_(l — X — (/’l’l “2)]
ni no
2 2
Tp77/ Tp>n1+n2_2

% (n1 + Nog — 2)]9 P
— (nl 1y — 2) —p+1 p,(n1+n2—2)—p+1

29



100(1 — a)% C.R. for p; — py = 6:

{31159T2§Ta2,p,1/} V=mn1+ng — 2
where T2 is the squared mult. distance between X; and X

or
(n1 +ng —2)p

(n1+n2—2)—p+1

{all 6>T° < Fa,p,(n1—|—n2—2)—p—|—1}

Follow-up analyses

e ‘“{-interval”:

1 1
a'x; —a'xy + tg,nﬁmg\/( + ) a’Syea

30



e “Bonferroni interval”:

!l S e 1 1 /
ax; —axyx b nytny—2 -+ a’S,ya
ni ng

— k is # of contrasts of interest

ex | want intervals for each of p variables

Then, [ai,...,a,] =1, and k =p

o “T2_interval”

aX1—aX2:|:\/T2p \/ aSpga
77 nl

2 —  (ni4na—2)p
Where T «,p,V (n1+n2 2) p—|—1Fa7p (n1+n2 2) p+1

e Examine discriminant fU.IlCtLlOIl
aA — S_l(X_ —X_Q)
pl 1

for indication of contribution of the variables to separation of the

groups
31



— If 2’s are not commensurate consider standardized coeflicients

1
*x _ T2
a —nga

where

S$11,p# 0

ng = diag{Spg} =

0 Spp,pl

ex | Duchenne muscular dystrophy

— Test Hy : py = po using xs, x4, T5, &g

* Individual tests using t, /2,0 /2p, 4 /Tg’p’y as critical values
x FExamine discriminant function coeff.

. Standardized coefficients

32



Testing p; = p, when 3y # 3

Univariate case (“Behrens-Fisher Problem”):

}_(1 - )_(2 approx
= R ¢,

2 2
3_1_|_S_2
ni no

where

)
[BNEY

ni+1 na+1

+ (Welch, 1937, 1947)

e Hsu (1938) and Scheffe’ (1959) argue that significance level for

usual t-test is preserved when ny = no

33



Multivariate case:

S,  Sp] "
T = (}_(1 — )_(2)/ [nl + n2] (}_(1 — }_(2) — X]%

as  (n1 —p) = 00, (N2 —p) = x

e Significance level preserved for usual T2 test when n; = ny and n;
and no are “very large” (Ito and Schull, 1964)

e “If sample sizes are equal the significance level [of usual T test] is
not affected” (Carter, Khatri, and Srivastava, 1979)

? But do these properties hold with small to moderate sample sizes 7

34



Simulation Study in Christensen & Rencher (1997)

0.10

o o oo

—_— N N =

()

0 1 2 3 4 5 6 7 8 9 10
Ratio of Variances

FIG. 5. Type I Error for Student's 7 (p=1) and Hotelling's 7* (p=2, 5 and 10) for
Different Variance Ratios (o0,:0, or £,:2;) when n,=n,

(Chk'35‘+em§ew & Kewcher HCI7>

For matrices of form 3, = k3, equality of sample sizes (n; = ny) is

less able to protect Type I error rate as p increases

e (Study considered small to moderate ni,nys € (2p, 10p))
35



For multivariate Behrens-Fisher problem, consider
* 2 = = —1/= —
T* = (X —%2)'S; (% — %Xo)
as a statistic, where
S S
_ 2L, P2

ni no

Se

36



e There are several tests for y; = pu, when 3; # 35, and many of

these use
2 approx 9
I ~

For example:
— Yao (1965) test uses

1 1 1 [ iSi 7

vt (T*2)2 Z n; — 1 [(Xl — X2)'S, 1’n_7;Se 1(X1 — X3)

i=1

x Note: this is a multivariate extension of Welch’s approach to

univariate problem

— Nel and Van der Merwe (1986) test uses

o tr {S2} + <;r{se}>2 2
ot G (3

37




' —— Pover

05 —~ N e
04 —

J < unnflated a

FIG. 1. Average Type I Error, Power and Alpha-adjusted Power (AAP)
- (Chnistensen 4 PCV\Cb\er) (99 '7)
e Simulation study: Nel and Van der Merwe (1986) and Kim (1992)

have highest power among tests with uninflated Type I error rate
ex | Muscular Dystrophy

38



Tests for additional information

| < px1
Let x1; = i b ,i=1,...,n1 bear.s. from Ny ,(p;,3)
Z1; ] < q X 1

i\ < X 1
and Xo; = Y2 b ,i=1,...,n9 be ar.s. from Nyi,(pty, )
Zo; | «— (g X 1

e Start with y measurements

— Will the ¢ x 1 subvector z measured in addition to y
significantly increase the separation of the two samples

(or is z redundant in presence of y?)

_ Y1 _ Y2
e Sample means: X; = and X, =
Z) Z2
S S
: : yy  Pyz
Common sample covariance matrix: Sy, =
Szy Szz

39



e If y and z are independent:

2 _ g2 2
Ty =15 + 14
e If not independent: Compare T, , with T
2 ninz  _ N _
1514 T (X1 —X2)' S, (X1 —X2)
2 N2 — — V oa—1 /- _
1, = . (Y1 —¥2) S,y (¥1 — ¥2)

Then, we can show that

2 2
Torqg — 15 ~ T2

2 q,v—p
v+ Tp

e (=P F,
v—p—q+1 7

Ta?dd = (V — P)

v—p—q+1

or

40



v—p—q+1\ T - T,
Fadd = < . ) VT3 ~ Fov—p—q+1

where v = nqy +no — 2

e If just checking the addition of one variable:

2
Tadd ~ Fl,v—p

ex | Duchenne muscular dystrophy

— x3 and x4 are relatively inexpensive to measure compared to x5 and

xe. Are x5 and xg important above and beyond x3 and x4

— x3,T4,%5,r¢ may depend on age and season. Are r; = age and

r9 = season important?

41



B.iii. MANOVA (one-way)

e Comparing means from g groups

\
Sample from population 1: x11,X12,...,X1n,
Sample from population 2: x91,X29, ..., X2, independent
’ random
samples
Sample from population g: x41,Xg2,...,Xgn, )
xgj ~ N(py, 2) ¢ 3 is the common covariance matrix

42



e Instead of testing

Ho:py = py=--+=p, vs. Hy: at least two p’s are unequal
we usually reparameterize
pHy = p+ T¢ < treatment effect
Thus x¢; ~ N(p + 7¢,3%) and
Hy:m1=70=---=174
e Our model:
Xpj =p+Te+ey, C=1,...,9, 7=1,...,n

— For uniqueness (identifiability), we impose the constraint

nety = 0

~
I MQ
—

43



e Decomposition of sample:

Xej = X +(Xe—X)+ (Xe; —Xp)
1 T 1 1
observed overall estimated residual
sample treatment s,
mean effect
r #,

44



e Multivariate analog of total (corrected) sum of squares is

g Ny g g ny
— / — — / — /
g E (x¢; — X)) = E ne(Xe —x)(n)" + E E (%05 — %¢) (1)
/=1 5=1 /=1 /=1 =1
total corrected = = E
sum of squares “Between” “Within” groups
groups .
and cross } matrix
products matrix matrix => 7 _,(ng—1)S,

Notes:
— Assuming no linear dependencies, rank{H} = min(p, vy )

gth

— Sy is the covariance matrix for the sample. So,

E{@z:llne) —gE} -

where rank{E} = min(p, vg)

45



MANOVA TABLE (one-way)

Source SS Matrix d.f.
Treatment H vg =g —1
Error E ve = (D_7_1me) — g
Total (corrected) H+ E >0 _ine)—1
Wilks” A
The likelihood ratio test of Hy : gy = pgy = --- = p, rejects Hy when
E|

A:—<Aa VH,V
|E—|—H|_ yP,VH ,VE

e Note: Reject for small values of A. As in univariate anova F'-test,
we “accept” when total SS (E + H) is dominated by error (E).

e Note: We sometimes refer to the subscripts of the A, .., .

77

distribution as “dimension,” “numerator df,” and “denominator

df” (eg7 Adim,dfnum,dfden>
46



Properties of Wilk’s A:

1. For statistic to be obtained, we need vg > p.

2. Degrees of freedom vy and vg are the same as in analogous
univariate case; e.g., one-way model: vy = g — 1 and
VE = =1 — g

3. Let A\,..., A be the s non-zero eigenvalues of E-'H, where

S = miﬂ(pa VH) Then A = Hz 1 1—|—>\

4. Critical value Ay p oy .0, decreases as p increases. Thus, adding

variables decreases power unless variables contribute to separation.

47



5. When vy =1lorvg =2o0rp=1or p=2, A can be transformed to

follow an F' distribution.

o IfVH:1

v —p+1 1—A

D A NFP,VE—p—i—l

o IfVH:2
v —p+1 1 — VA
D JA ~ Fop2(ve—pt1)

o Ifp=1

VE 1—A

~Fy

Vg A HoTE

o [fp=2




6. Approximate tests

e For p > 2 or vy > 2 and n large

1 rox
X == |ve =5 (p—ve +1) [ InA TR g

pvg

1

Approximately valid when p? 4+ v% < % [VE —5—vg+ 1)}

e More correct approximate distribution for A (exact when vy or p is
1 or 2):

1 — A" dfy approx

F = ~ I
Al/t dfl df1,df2

df1 = pvy
dfg = wt — %(pVH — 2)
w=vp+vg—5(p+ve+1)

K

\

PR for p? 12— 5> 0 ( + vy > 3)
e for p? g or p+vu
1 for p* +v#4 —5<0 (or p+vy <3)

49



Other MANOVA Tests

Let (A1,...,\;) be the ordered eigenvalues of E1H, where
s = min(p, vy ) = rank of H

e Roy’s Largest Root:

0=\

— Note: SAS and most authors denote Roy’s Largest Root as \q
(the largest root of E"'H). RC defines Roy’s Largest Root as

§1= 113\1, which is the largest root of (E + H) 'H.
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— Approximate F-statistic (used by SAS):

Fy = <VE _;Z—i_VH))q

is an upper bound for “true F” which is distributed

Fog,vg —d+vpy

where (d = max (p, vg))
x Thus, Fp-test is anti-conservative (yields lower bound on p-value)

— The eigenvector a; corresponding to Aq comprises the

discriminant function coefficients.

— For programs unable to obtain eigenvalues of nonsymmetric

matrices, we can use the fact that \; is a solution to both

(ET'H-M)a=0

and
1 1 1
(E"*HE 2 -\I) Eza =0
g ~ 7/ N’
“symmetric” “e’vector of
1 1
E 2HE 2”7
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e Pillai’s Trace:

tr{(E+H } Zgz

where &1, ..., &, are the s ordered e'vals of (E+H) ' H

— Note 1:
E~'H is analagous to 2ehween 55 “Large:Ratio”
(E + H) 'H is analagous to betf)"tvslerésss Reject Hy
— Note 2:
)‘z fz
i and >\z —
6 1+ >\z ! 1 — gz
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Approximate F-statistic (used in SAS):

(2N + s+ 1)

y
SR p (s - v) ~ Famtstt),s@N o)

where
s = min(vg, p)
m =3 (lvm —pl = 1)

N=1ivg—-p-1)
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e Lawley-Hotelling Trace

U= X\
1=1
= tr{E"'H}

Approximate F-statistic (used in SAS):

2(sN +1)
s?2(2m+ s+ 1)

— Also known as “Hotelling’s generalized 12"

Fu = U~ Fs(2m—|—s—i—1),2(sN—|—1)
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Why four test statistics?

e All 4 are exact tests (i.e., have size a), but when Hy not true they
have different power

e For p=1,pu1,...,ur can be ordered along 1 dimension (line) and
F-test is U.M.P.

e For p > 1,puq,...,u,; are points in s = min(p, vy ) dimensions. But
means may in fact occupy only a subspace of the s dimensions; e.g.,
they may lie close to a line (1-D) or a plane (2-D).
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exX

Compqu;ms A B,V, 4 U :

| Cy !’Ee v |'ovv\

basrc assumptions

« Type L evror rate uvw(g« |

k. .
Bes‘t M \I\IOV'S+

Al 4 statistics ave same

- Poweyr Undey 'bas_ i'c
qssump‘t.‘ows 4 d\*@\)SQ Mmeihs

v A W b6

- Powey undeyv dbasi'c
assww F‘(:\'ons ¢ collimear meavs

& W A V

‘Tyf’c T error vate witTh
heterogeneous coVav)ahee
\ matvices

V. N U ©

Visual memory task

-1

x1 = % correct on positive stimulus questions

xo = % correct on negative stimulus questions

g =3 (One healthy group and two impaired groups)
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Egyptian skulls

r1 = maximum breadth of skull (mm)
xr9 = basibregmatic height of skull (mm)
x3 = basialveolar length of skull (mm)
x4 = nasal height of skull (mm)

g=3 (4000 B.C., 3300 B.C., 1850 B.C.)

Rootstock

r1 = trunk girth at 4 years (mm x 100)

ry = extension growth at 4 years (m)

r3 = trunk girth at 15 years (mm x 100)

x4 = weight of tree above ground at 15 years (Ib x 1000)
g==~0
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Follow-up analyses

9
8 m = ®
=
7 B o o
O
1 6fF = O
PY [ J
5 [ ] d [
o [
4 o °
3 1 ]
0 2 4 6 8 10

Y2

Figure 6.1 Three samples with significant Wilks’ A but nonsignificant F’s.
(Revicher 1995)

Although only multivariate tests could detect group differences above,
we still are often interested in follow-up analyses after conducting a

multivariate analysis.

e Univariate hypothesis (F') tests

e Multivariate contrasts

e Confidence intervals/tests for p;; — pr; (treatment differences for
3t variable)

e Analysis of discriminant function
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Univariate F-tests

Often interested in univariate ANOVA for testing

Hoi: p1i = p2i = = fi i=1,...,p
/]\
mean of
1th var.

for 1st
group

e Some advocate a “protected” univariate test approach:

1. Conduct overall size « test of Hy : py = -+ = p, using

multivariate test (e.g. A)

2. Test each of Hy; (i =1,...,p) at level a only if multivariate test
in step 1 rejects. [That is, when Hj is “accepted” this approach
automatically “accepts” Hy 1,Hoo,...,Hop.]
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Defining our experiment by the p tests in step 2, the overall EER is
(for independent variables when Hj is true):

Pr{at least one Hy; rejects} = (a)(1—(1—a)")
< «

What about properties of individual tests when Hj is false??

Suppose:
M1 0 Hi1
H12 0 i2 .
= = p + | (andpu,=| | =pm1=2,...,9
px1 : .
_:ulp_ _O_ _:uz'p_
Let 0 be some value such that our test of Ho : py = -+ = p,,

using A has power = .50.
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Consider the “partial” experiment defined by the p — 1 tests of
HO,Q, Ho,g, ca 7H0,p-

The partial EER for this scenario (assuming independence) is

Pr{at least one rejection among Hg s, ..., Hpp}

TV
“A??

= Pr{“A”|A rejects} - Pr {A rejects}
— [1 (- a)p‘l} - (.50)

Thus, the partial EER can be dramatically larger than «
ex| p=10,a = .05 = partial EER = .20

Conclusion:

“Protected F test” approach protects overall EER, but may
have poor properties for other inferences

— Consider tests at % level
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Contrasts (multivariate)

e Already considered contrasts of the type C pu for testing

dXPpx1

Hy : Cu = 0, where each row of C sums to 0

eX

Linear trend among 4 observations?

Hday1

Hy:|-3 -1 1 3] day2

Hday3

_:uday4_

e Here consider contrasts of the type

5261u1+62ﬂ2+'°'+cgug:MC

Wherel\/I:[p,1 TP ,ug}

\ 4
"~

pPXg
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A J 22 C;
var{d} = ;cq; - = (Z -

i=1
~ J 0-2
var{d} = — 1S
where S,y = éE and vg = > 7 (n; — 1).

So, our test is based on

P, VE
or define
1 oAl E|
H, = 00 d A= ~ y
! 7 ﬁ - 'E + H,| prhvE

ex | Rootstock
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Confidence intervals for treatment differences (11;; — ;)

Interest in components of difference between groups

Hi = P =Ti — Tk
Specifically, interested in the jth component of this difference vector
Kij — Rkj = Tij — Tkj
which is estimated by Z;; — Ty

Because we often want to obtain confidence intervals for all g(g — 1)/2
pairwise comparisons for each of p variables simultaneously, we use a

Bonferroni adjustment to protect overall EER.
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100(1 — )% (Simultaneous) Confidence Interval for p;; — g, is:

N ~ / nz ,n/k;
S divided by

# of comparisons
=pg(g —1)/2

o 1 1
(Tij = Tkj) £ [0/ (pg(g — 1)) ,[Z§1<m—1>1\/ “plii (_ i _>

where s, j; is the 7' diagonal element of Sy, =E/ (>27_ (n; — 1))
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Warning for SAS implementation

o . . (84
SAS uses upper oD quantile instead of upper Dol

Tl) quantﬂe Oft

distribution

(Bonferroni intervals are part of univariate output.)

— Adjust by specifying ALPHA in MEANS statement

ex| p=3,g9 =9, desired overall EER = .05

proc glm;
class group;
model yl1 y2 y3 = group;
means group/bon alpha = .016667 <« ==;

run;

ex | Rootstock
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Analysis of discriminant function

(More detail to come in Section V of the course)

g = 2 case:

Choose a to maximize (for a # 0):

@’ (X1 — %)) &' (%) —%2) (X1 —%2) a

a’S,ea a’S,ea
—1 /— _
— a = Spﬁ (Xl — X2)
g > 2 case:

Choose a to maximize (for a # 0):

a’Ha
AL= a’'Ea
—> \; = largest e’value of E"'H and a; is corresp. e’vec
e Relative importance of 15¢ disc fcn = f_—b\
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ex | Rootstock

Girth4 Growth Girthl5 Weight
Univariate F' 1.93 2.91 11.97 12.16

a=[4703 —.2627 .6532 —.073§]

Recall that a] = a;\/spe.ii = a; X L ¢.;, where e;; is the ith diagonal

ve
element of E, so

1
a* = \/E[.4703\/.3200 — .2627V/12.1428  .6532v/4.2908  — .0738v/1.712)]
= [.0411 —.1413 .2088 — .0149]

Test for statistical significance of final m discriminant functions:

S

1
Am — H 1 _I_)\z i Ap—m—i—l,VH—m—I—l,l/E—m—l—l

1=m
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Tests for additional information

vi| < x1
Let xp; = Y b , 1 =1,...,ny
Zoj | < g x1

be (p + q)-variate observations from the /" group

e Wish to determine if z makes a significant contribution beyond y

in detecting separation of groups

Calculate:
E — By By and H = Hyy Hy:
(p+a) % (p+q) Ezy Ezz (p+aq)x(p+aq) sz sz
E|
A, = ——
Y E + H|
N
Eyy + Hy,y|
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Test of additional info:

A _ % ~ A
Z|y q,VH,VE—P
4 Y 4 4
“partial A # of # of
statistic” Yars Yal“s
in z in y
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Two-Way MANOVA (fixed-effects)

Model:
Xijk = M+ QO "1_/8] +77,3 + €4k
1=1,...,a
i=1,....b
Ek=1,....,n (for simplicity, assume n;; =n Vi, j)

a b a b
° Zi:l Qi = ijl Bi = Z¢:1 Yij = 23:1 Yij = 0
e Assume e;;; ~ N,(0,3)
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60!”\ 0'(: S%vqlf'es

Dovree and Produc+,s Jf
A —nBZ(x,, —x)(x,, XY | a-I
B B, = 1a d{: (%5 -XX%5-%) | b
(et | oo =0 2L (BB Bor D)) | )
_Ervex £ Li?i (R - Z,)(zgi % |ab@n-D)
(c-’&gc‘::.e\&) By s*E 7 /7 ,fé,% (xie - X% [abn - |

e X; = average over ith level of factor A
e X ; = average over jth level of factor B
e X;; = average over ¢th level of A and jth level of B
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Test for A, B, and AB (interaction):

B,

A — |E T HA‘ p,a—1l,ab(n—1)
E|

B — |E i HBl ~ Ap,b—l,ab(n—l)
E|

Agp = E + Hap ™~ Ap,(a—l)(b—l),ab(n—l)
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Follow-up analyses

e Individual F-tests (univariate anova’s)

— As You Might Expect (AYME)

e Contrasts

— AYME

e (C.I.’s for treatment effects

— AYME

e Analysis of discriminant function

— AYME

* For analyzing contribution of p variables to separation of
levels of A use first dicrim. function (e’vector) of E~1H 4

+ Analyzing levels of B = use E"'Hp

x Analyzing levels of AB = use E"'Hyp
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An interlude about interactions...

Suppose we have two levels of factor A and two levels of factor B:
Yijk = b+ i + B + vij + €ijik, 1=1,2, 5=1,2

SCGHGYI}’ I A Siﬂnl"(:\bqn't? B Slﬁ-? ln'temx St}y?

PR AI
———e Ay Yes No No

8, B,

Scenario 1

! >< A; No No Yes

Scenaris II[

A
< Yes No Yes
7 Az
g

) =23

Scenaric IL
/. A ]
Yes No Yes

0\. Az
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Is Main Effect for A interpretable in Scenarios II, III, and IV?
e Yes, if “significance” simply refers to size of effect a; — as (i.e.,
effect of A averaged over levels of B).
— “Significant” doesn’t mean “one level is best”

— “Significance of Main Effect for A” is affected by number of
levels of B and sample size for each level
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Mixed Model MANOVA (Split-plot)

exX

4 temperatures (T;,i=1,...,4) t
3 days (Dj,7=1,...,3) d
3 metal alloys (Mg, k=1,...,3) m=

=4
=3

Xijk 1s a p-variate response of metal strength

Day 1t Guenl  Oven2  Ovewd Oven
T T T, Tz
_,'\_,,:\ M, | (M= | (M
M, M= | M) | My

| (1 | (s | (M4 |

g
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Source Af __Tests
T t-1=3 € |Hp l/le"' b |

M m-l 22 fgl/lgwA?
. (t-Dm-)= b IEL/1E+ Houl e\

\ntevﬂ on) ﬁ
Evrov 't (d' l)( m—j):: I

- Need t(d-)(m-1) >p to make '('.F-S‘t/
+ Need t(d-1) 2 p to mMake Test

~ alternative: Conduct p univaniate anova’s
testing each vaviable :t_s/
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II1.B.iv. Profile Analysis

p-variate response consists of tests, questions, etc. measured on

members of g groups.

exX

Guinea pigs on three diets

e Weights measured at ends of week 1, 3, 4, 5, 6, & 7

Break hypothesis:

Ho:pyg =py=--=p,

into three more specific hypotheses:

exX

Hyq : “The g profiles are parallel”

Hy 1 true might yield a profile plot like:




Hys : “The g profiles are at same level”

ex | Hp 1 and Hyo true might yield a profile plot like:

ANA T3

| Y
v | I

|2 ‘5

Hys : “The g profiles are flat”

ex| Ho1, Ho 2, and Hy 3 yields the profile plot:

r‘urs Ij210#3

5 = LA
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Formalizing the null hypotheses

e “Parallelism”: Difference in responses between any time points is
the same for all groups.

Hoy:  paj—pagi—1) = poj—Ha(j—1) = = Hgj—Hg(j—1) for j=2,...,p
OR
Cpy = Cuy =---=Cp,
1 1 0 0 0
0O -1 1 0O O
where C =
(p—1)xp :
0 0O O —1 1

or C can be any other full row rank (p— 1) X p matrix such that C1 = 0
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e “Same level”: Total (or average) response (over time) is the same

for all groups.
Hop : V'py =1V pg = =1'p,

— Note: If Hy; holds, we can also refer to Hyo as the hypothesis of
“coincident profiles” and Hpy can be written:

Hop @ pj = proj = -+ = pgg for y =1,....p
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e “Flatness”: No change in response (over time) for the profiles —

responses at each time (averaged across groups) are the same.

S M1 T 21 o gt _ .:Nlp+lﬁ2p+""|‘ﬂgp

H03 .
g 9

OR

C (“1 “9> —OorCii=0
g

A\ . 7
-~

“n” <+ average profile
— Note: If Hy; and Hyy hold, Hyz can also be written

Hog : piin = plig = -+ = flap = plo1 = -+ = plgp  that is, all pg
response means are equal.
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Tests
Test for H()l:

Test for Hys:

Test for H()g .

T2

=

~ |CEC/| N
" |C(E+H)C/ p—lvu,ve

B 1'E1l N
~ 1E1+ 1H1 Lva,ve

1—AI/E
= NFVH,VE

g —1
1
( E TL@) (C)_()/ (V_CEC/) Cx ~ T]?—LVE
¢=1 c

vg —(p—1)+1
ve(p—1)

2
1=~ p—lve—(p—1)+1
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eX

Guinea Pigs

Hyq: parallel?
Hoo: same level?
H032 flat?
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II1.B.v. Repeated Measures

e Similarities to “profile analysis”
e LFach subject measured under several treatments or time points

e Comparing means of treatments applied to each subject:

within-subjects tests

e Comparing levels of factors assigned to groups of subjects:

between-subjects tests
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Structure of g-groups R.M. experiment

Factor A
Factor B thin- subyects

(BC?WC‘& ’ subjects) Sul:jechs ;\,D 1‘ A2 “L'—>_'
B‘ Su (X"l iz == Xu}’) = X_l/l
S G Kz Kp) = X
%9 Ssl (%an Xq12 Xatp)' X
Y
[ 85 (%gnl E?:\z Xﬂ“l’) 2(’3“
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Univariate model: (split-plot):

Tijr = p+ Bi + 534+ Ar + BAjr +eijr
—— —~ ——

between within interaction

ANOVA Table

Soucce . Ms
B (bebueen) g~ | MS? j
S (objecks) 9Ca-1) MSS
A (within) p | MS K
DA (3-1)(p-1) M%BA}]
Freor (68 inkecar) 3(V\'DCP’D MSE

AQL\&SG’ Ftests Valt'o{ when tle
v wl"{if/u'v\-'Sthe_c,‘(' ob ser vatisns

'x ., ')(,‘:A\? ave Co(Y(e [1*6&7

L‘J‘l,.-
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e Standard univariate assumption:

var{x;;} = ¥ = 0°I, Vi,j < “sphericity”
Univariate F'-tests still valid as long as

CXC =51
/I\
(p—1) xp
orthonormal

contrast
matrix

This condition is often called “sphericity” (but we’ll say

“generalized sphericity” for clarity)

ex | For p =4, we could use

3/V12 —1/V12 —1/V/12 —1//12]
C = 0 2/v/6  —1/4/6 —1//6
0 0 1/v2  -1/v2 ]
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Special case of CXC’ = ¢°I:

L p
> =2 P
P

1

=02 [(1 - p)I+ pll’]

— This case is called “compound symmetry”
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Univariate strategies

1. Assume “generalized sphericity”
Fehlberg (1980): Use Hy : CXC’ = ¢°I preliminary test
using a = .40. [This test to be discussed later in the course]

If hypothesis is “accepted,” use standard F'-tests ...

MSA
.. fOI' AI F p— M—SE ~ Fp—l,g(n—l)(p—l)
MSAB
... for AB: F = 5

sE " Fle-ne-nem-ne-1
BUT, even mild departures from CXC’ = ¢°I can seriously
inflate Type I error (Boik, Psychometrika, 1981).

2. Conservative test:

MSA .
“ e fOI' AI F = M—SE ~ Fl,g(n—l)
... for AB: F = M5AB

vsE ~ Fle-nen-n

e Too conservative
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3. Adjusted F'-tests

e A compromise between approaches 1 and 2 when sphericity violated.

e Greenhouse and Geisser (1959) recommend approximate F-tests
involving within-subjects factor which reduce numerator and

denominator d.f. by a factor of

(3 - %11’2)}2

(p— tr [(2 - %11’2)2]

SAS: “G - G €7

E =

— To estimate €, use ¥ = =

VE
— F-tests ...
- for A F = 3755 ~ Fepo1).eg(n-1)(0-1)

. _ SA
- for AB: F = S765 ~ Fe(g—1)(p—1).69(n—1) (p—1)
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— cand é € (= 1)

p—1 7
" T
1 sphericity
genera
holds
(non-spherical)

>
— Approach is generally too conservative, especially for small n

e Huynh and Feldt (1976) give another expression
for SAS: “H - F &”

— Less conservative

— “H — F €” can exceed 1 = set equal to 1
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Multivariate Model:
Xij = 1+ B; +¢€ij
e Notes about 3,

— 3, is a p-vector of main effects for group ¢

— Tests on factor A (within subjects) and AB interaction
constructed with contrasts of 3, (as in profile analysis)

e Standard multivariate assumption:

V&I’{Xij} =X V Z,]
Note: ¥ is completely unrestricted (no sphericity requirement, etc.)

e Several similarities with g groups profile analysis
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Contrast Matrices in SAS Proc

— Assume p=>5 times/variables

contrast or contrast(5):

GLM (“repeated” statement)

contrast (2):

1 0 0 0 -1 1 =1 0 0 O
0 1 0 0 -1 0 —1 1 0 0
0O 01 0 -1 0O -1 0 1 0
00 0 1 -1 0o -1 0 0 1
‘‘repeated time 5
polynomial (1 25 10 20) polynomial’’:
2 -1 0 1 2| [-43 —36 —17 .15 .80
2 -1 -2 -1 2 43 21 =33 —-.71 .39
1 -2 0 2 -1 —43 .14 73 —.51 .08
1 -4 6 -4 1 49 -7 37 -—-.09 .01
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—.25
—.25
—.25

helmert:

—.25
—.33
1
0

—.25
—.33
—.5
1

mean or mean (5)

—.25
1
—.25
—.25

—.25
—.25
1
—.25

—.25

—.25

—.25
1

~25

.33
_5
1

—.25
—.25
—.25
—.25
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< The helmert contrast matrix
identifies the time at which
the treatments cease to
change or plateau

profile:




e Test for A (within subjects)

— Analogous to “flatness” test in profile analysis

— Want to compare means for z1, ..

ex

., xp averaged across levels of B

g
Let o =Y p;/g=(p1s---:pp)’

1=1
HO U = ..
-1 1 0
0 -1 1
0O 0 O

98
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or some similar
contrast matrix



Test statistic for A:

T°= N(C x Y(CS,, C)'( C x)~T2

T 0 —~—~ N~ p—1,vE
9 _n; grand % (p—1)Xp
mean

ve—(p—1)+1

T* ~Fy (e
ve(p — 1) p—lve—(p—1)+1

OR

_ |cEC|
A= cErmEHe] ~ Av-11s

where H* = NxX’ is from the partitioning

g mnm
ZZX,UX;]- =E+H + Nxx/
i=1 j=1
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e Test for B (between subjects)
— Analogous to “same level” test in profile analysis

— Want to compare group means (averaging over p levels of A)

Hqa:1' — — 1’ Llf —...—Llf
o0 - l‘l’l__ l’l’gor l'l’l_ — I’l’g

VP VP
SAS
+ That is, we can just conduct one-way ANOVA on z;; = 1'x;;, so
the test statistic for B is
1'E1
— 37 / ~ Al Vi VE
1'E1+ 1'H1 T
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e Test for AB interaction

— Analogous to “parallelism” in profile analysis

Test statistic for AB:

_ __ICEC] A
T [CE+H)C|] T
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exX

Wear of fabrics

Measured in 3 periods (within-subjects factor)
— 1%* 1000 revolutions
— 274 1000 revolutions

— 374 1000 revolutions
2 abrasive surfaces (between subjects factor #1)
2 fillers (between subjects factor #2)

3 levels of “proportion of filler” (between subjects factor #3)
— 25% filler
— 50% filler
— 75% filler

Linear or Quadratic trend in proportion of filler?
Linear or Quadratic trend in periods

How do univariate and multivariate tests compare?
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Repeated Measures with 2 Within-Subjects Factors

ey

w l;tl’ll.\n -5 UﬁJEC'lLS ‘-FQCTOVS

Belween- | A, AL Aj
5ubjecf5 o
Fd ctor - g"bj¢-€+§ S ”2 o ‘Bl‘ 62 _ /BB 8 \ Bg 33 - B 1 Ba. B 3

C \ S” %{, =(7~u| Xz iz 7uq Xus 'XHL'"X;I,'W IXW‘ ’/XW;

S'n' x",“l = (%nl| 7“”2 71"33 ’X'liq “‘nﬁ' %m‘".XL’nbb ’Xy\,“ %,n,,I;
CZ. 57_ ] )A(';’
32"7- ‘252"1.
G 85, X
/
33"3 Kang
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Model:

Xij = K+ TEij
® ~, is a p-vector of main effects for group
o effects for A, B, AB, AC, BC, ABC assessed with contrasts
e Denote a = number of levels for factor A
e Denote b = number of levels for factor B

e To test factors A, B, and AB, specify contrast matrices with
(a—1),(b—1),and (a — 1)(b — 1) linearly independent rows,

respectively.
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Blood data

— Compare 4 different reagents used in blood testing. (Reagent 1

is standard and reagents 2, 3, 4 are inexpensive alternatives.)

1 1 0 0 |
A*=| -1 0 1 0
10 0 1

— Measuring 3 blood counts (white blood, red blood, hemoglobin)

—1 0 1
1 =2 1

B* =

— 2 groups of 10 subjects with potentially different blood

properties — each subject’s sample has 12 measures
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erqen'(: 1 Reqaen't 2 Reagent s Rea enty
BCL paa BC> BCL BcZ Bc3 BCl Bc2 BC3 BCI Bcz Be3

QD14 4 1 1 1 o 0o 0 o o oL
WA=l -1 1 o o o 1 Vv oI 0 O O lea
-l -l o o O© o o o | | 'Jéﬁé
o {\ -1 o | -l 0o | -1 0 I ]e
-2yl -2 ) |l -2 1 1 -2 | |<«¥

Note: A=A*® 1, and B=1, ® B*, wherea=4and b =3
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aj = Rl vs. R2
1x12

a, = R1 vs. R3
a; = R1 vs. R4

b} = white vs. hemoglobin  (or linear in bc’s)
112

bl = red vs. Whiteghemo (or quadratic in bc’s)
_al *x bl-
al X b2
G = = A* ® B*
6x12 :
_8.3 ES bz_

Wy ”

where “x” is an element-wise product

(So, first rowof Gis[1 0 -1 -1 0 1 0 O O O O 0]
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Test for A (Reagents):
e T°=N(AX)(AS, A TAX ~T?

—1, VE
T ) )
grand 1R 9_(n; —1)
mean VE 1= v
when only
one between
subjects
factor is used
2 2
ex | T ~ T.
Reagent 3,18
OR
/
o A\ — |AEA’|

AETHHA| ™ Na—1,1,vp
where H* = NxX’ is from the partitioning

g ni
ZZXin;j = E—|—H—|—N)_()_(/
1=1 7=1
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Test for B (Blood counts):
e T° = N(Bx)'(BS,,B')"'Bx~T;
OR

L |IBEB'| N
o A\ = B(E+H*)B/| Ab—l,l,l/E

Test of AB interaction:

o 12 = N(Gi),(GSpEG,)_lGX ~ T(Qa—l)(b—l),VE
OR

o |GEG’|
° A= G(E+H"G| Aa-1)(b-1),1,05
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Test for C' (groups):
e Conduct ANOVA test (F-test) using

/ . .
zig =1'x5,1=1,...,9,5=1,...,n;
OR
_ 1'E1l
* A= yEizim ~ Monvs

Tests for AC, BC, ABC interactions:

|[AEA’| A
E+H)A|  Pra—lvm,vp

oAzlA

_ |BEB/|
* A= BEFH)B| No—1,vvp

___|GEG/|
* A= rgErmar ~ Me-D) -1 wnvs

Note: Between subjects effects (e.g., C) and associated interactions
(e.g., AC, BC, ABC) use H (not H*)

ex | Blood data in SAS
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I11.B.vii. Tests on Covariance Matrices
(Reference: RC, Ch. 7)

o Hy: X =3, vs. H :¥ # 3 (assuming MVN)

u=v[In|So| — S| + tr{SZg"} — p)

is a modification of the likelihood ratio with v = degrees of freedom

for S.

— v large:

— v small to moderate:
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e Hy:X =0"1 (“sphericity” ... assuming MVN)
Likelihood ratio test:

- S| 2
A [(tr{S}/m]
—2InA= —nlnu
pp|S| _ pp Hf:l )\i
(tr{SH" 2, A)°

and Aq,...,\, are the e’vals of S

2
where ©u = \n» =

_ . N
v large: —nlnu X1 p(pt+1)—1

2
— v small to moderate: — (V — M) Inu ~

2
6p X1p(p+1)—1
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— Note: Testing CXC’ = 0°1
use CSC’ in place of S in the test, i.e.,

2
(tr{CSC’})p_l > X%(P—l)(p)—l

where C has orthonormal contrasts as its rows
(p—1)xp

ex| p=4

_ 1\p—1 /
nln((p r!|CSC|

3/VZ -1/V12 —1/V12 -1/V12
C=| o0 2/vV6  —1/v/6 —1/V6
0 0 1/4/2 1/4/2

— Often called “Mauchly’s test”
x Calculated by SAS with “PRINTE” option of “REPEATED”
statement in PROC GLM.

— Fehlberg (1980) recommends a preliminary test of 3 = o°I at

a = .40 before using standard univariate F-tests in r.m. analysis.
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o Hy:3) =%y =-.-=3%, (assuming MVN for all groups)

S1[Z (S 7 -+ IS,

“BOX’S M” _ -
’Sp€|zZ 2
where v; =n; — 1,1 =1,...,g and Sy = lelw
— M near 0 = “reject Hp”
— M near 1 = “accept Hy”
Si] )
— Note: M = (
H ’Sp€|
. 18 max1m1zed at 1 when S; =--- =8,

... approaches 0 when one or more |S;| is very small (with other |S;]
large)

where ¢ = ( i=1v, 39, 1/@) 6(p+1)(g—1)
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— Note: M-test not recommended pre-test before 72 or MANOVA
tests

* Sensitive to nonnormality (often of little concern) and innocuous

forms of heterogeneity (e.g., varying amounts of kurtosis)

— Note: A better approximation is u~ Iy, 4,. See RC for details.
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III.C.i. Multivariate Multiple Regression

A short review of vec and Kronecker notation

al.
a/
2 a.1 a.o - .
Let A = — = (a;4
mXxn . T ( Zj)
. an me-vector
/
am,
a.]
a.o
e vec A= | R: “c(A)” gives vec A
aA.p
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Let B = (b;;
erq (])

a11I3 a12I3
a21B  a22B

mxn pXq

@me @ij

\ .

ahﬂB
amJB

ArrnB

~~

mpXxXngq

R: “kronecker(A, B)” gives A ® B
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Some properties (without proof)

Assuming that all dimensions are appropriate for matrix
multiplication. . .

via) (AB)(C®D)=(AC)® (BD)
v (b) vec (ABC) = (C'® A)vec B

)
)
(c) tr{AB} = (vec A’)’ vec B = (vec A)’ vec B/
(d) tr{ABCD} = (vec A’) (D’ ®B) vec C = (vec A) (B@D') vec C’
Vi) (AB)Y =A@ B’
V) (AeB)l=A"1gB!

118



Univariate Multiple Regression:

y =X B + e

nx1 NXTrx1 nx1

e Assume E{e} = 0 and var{e} = ¢°I,,. Then

B =XX)"'XYy
.
O.L.S.

estimator

is B.L.U.E. for 3.

e Note: we’ll use g to denote the # of xs and » = ¢ + 1 to denote the
# of columns in the X matrix when using an intercept
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Multivariate Multiple Regression:

Y=XB+E
where -
Y.
Y = — {Y-l Yp}
y/

[1]
|
|
®
—_
)
S
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e Note that

e Assume F{E} =0, var{e;.} = X , and cov{e;.,er.} = 0 for all
pXp pXp
i £k
e Question: s B = (X’X)"'X'Y a B.L.UE.?

TXDp
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Rewrite model:

vec Y = vec (XB) + vec (E)
= (I, ®X) vec B+vec (E)

= p = e
T prXx1 npx1
rank = pr
when rank(X)=r
Note: E{e} =0
and
‘ ( \ \ o11l, o1l - o1l
€1
_ oo1ln o022l - ogply
var{e} =varq¢ | - | p = = ¥ ®I,
' PXp
e.
. \ p) g O'plIn O'pQIn O-ppIn

e Since var{ e 1} does not take the form ¢°1,,,, the B.L.U.E. for 3
np X

will be the G.L.S. estimator for 3 (which depends on the unknown
>) BUT...
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- 4 -1
— (1 ® n}X(p) \(E ®I,)" (I & n)X(p) (I, ® X) (T ® In)_l vec Y
_\ (ngX’) ~ (el _
(= 'eX) LX) I,oX)(Z'®I,) veY
[by prop’s (a),(e),(f)]
_ [2—1 ® (X'X)] ! (E'eX') vecY [by prop (a)]
= (TeX'X) ) (Z'eX') vecY [by prop (f)]
= (I, ® (X'X)"'X') vec Y [by prop (a)]
=B = (X'X)"'X'Y [by prop (b)]

e O.L.S. = G.L.S. is BLUE!

(Even when

3 is unknown)
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e Despite the fact that the p variables y;1 ... 4, are correlated, all the

info needed to estimate 3., is found in y.; only. That is,
rx1

multivariate regression coeflicient matrix B can be formed by
rXDp

pasting together the p columns from p separate univariate

regressions (as long as each regression uses the same predictors X )
nXxr

e But all Bij in B are intercorrelated ... must take multivariate

approach to inference
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Assumptions for Multivariate Multiple Regression:

Modelis: Y = X B + E orvec Y = (I® X)vec B+vec E

nxp NXTrrXp nxp
:“B//

Assumptions:
1. E{Y}=XBor EF{E} =0
2. var{vec Y} =var{vec E} =X ® 1,

(That is, var{y;.} =X foralli =1,...,n and
cov{yi,y;.} = 0 forall i # j)
pXp
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Some properties of B = (X'X)'X'Y

1 is called the “least squares estimator” because it “minimizes”

/

. B
E =22 = (Y — XB)(Y — XB) (where E is an “error matrix”
pX

[1

analogous to the E matrix in MANOVA). Matrix is “minimized” in

several senses:

(a) Let B be some other estimate of B.
Then,

A A

(Y -XB)(Y-XB)=(Y-XB)(Y-XB)+ A

where A is a positive definite matrix
(b) B = B minimizes tr{(Y — XB) (Y — XB)
(¢) B = B minimizes |(Y — XB) (Y — XB)
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2. Let Y = XB = X(X'X)"!X'Y be predicted values and
ZE=Y-Y =(I-X(X'X)"'X')Y be residuals
Then

(a) Residuals are perpendicular to the columns of X

S XE=XI-XXX)"'X") Y= 0

XD
(b) Residuals are perpendicular to the columns of Y

S YE=BXI-XXX)"'X)YY=0

pPXp

(c) Total sum of squares and cross products (“Total SS and CP”) can
be partitioned as:

Y'Y = (Y +E)(Y+E)
A N ~ ] ~
YY =YY + EE
N~~~ N~ —~—
t t t
total predicted error
SS&CP SS&CP SS&QP
matrix matrix matrix
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3. Bis BLUE. for B

e Minimum variance estimator among all unbiased estimators

e If columns of = are normal, B is B.U.E.

4. Elements of B are intercorrelated

Bor Boz - DBop
b1 Bz - Bip

Bql BqQ o qu
e (s in each row are correlated due to correlation in y

e (s in each column are correlated due to correlation in x
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5. Unbiased estimate of var(y;.) = var(e;.) = 3.

o E _(Y-XB)(Y-XB) =5

n—q-—1 n—q-—1 n—q-—1
1 R
= (Y'Y — B'X"Y)
n—qg—1

Proof:
E{n% } = E{Y — XB}
= E{(I, - X(X'X)"'X")Y}
= (I, - X(X'X)"'X') E{XB + =}
= (I, - X(X'X)"'X') E{E}
=0

nxp
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El{ee;}=E { (T, = X(X'X) ' X)y.] [T, - X(X'X)~ 1X’)yg]}
— E{[(I —~ X(X X)'X")e;]’ [ X(X'X)™ 1X’)e-j]}
— E{e,i\( — X(X ) ( 1X )Je-j}

I, - X(X'X) 1X’

= B {ir {1 - X(X'X) X)) e, }}
= tr{ (I, - X(X'X)"'X) B {e e/}
= O'ijtr { (In _ X(X/X)_1X/>}

o ({1, 5 (XXOCX) ]

=0y (n—(g+1))




Note: If X is not full rank, we can obtain similar results based on

AN

B = (X'X)"X'Y ... we'll leave that discussion for “linear models”!

Another note: \ﬁa\r{ e } = ( 1 E) ® 1L,

npx1 n—q—l1

andE{( 1 E)@In}:E@)In

n—qg—1

6. Variance of 3 (i.e., var{vec ]AB})

Var{ 3 } - var{[(I®X)’ IeX)] ' I®X) vec Y}

rpX1

_ - /
= |1, ® (X'’X)"' X/| var{vec Y} [Ip @ (X'X) ™! X’}

_ - /
= |1, ® (X'X)" ' X/| var{vec B} [Ip @ (X'X) ™! X’}

_ :Ip @ (X'X) "} X’: (E®1,) [Ip ® X (X’X)_l}
% [(X’X)_l X1, X (X’X)_l}
=Y e (X'X)"!

131



cov {(X’X)‘1 X'y.;, (In -X(X'x)" X’) y.j}

= cov { (X'X) " Xe, (I, - X (X'X) ' X') e}
= (X'X)" X'oyL,, (L, - X (X'X) "' X')

= oy |(X'X) X - (X'X) T XX (X'X) T X

= 0

rXn
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(d) Estimating mean of x;, B

1xr"XP

e x/B is an unbiased estimator of x/,B
o var{x,B} = 3(x}(X'X) 1xq)

scalar
(e) Estimating a new observation yg using xq

!/ / /
yo = XoB + €
e x,B is an unbiased estimator of yg

o var{y, — x,B} < “forecast error variance”
— Note that

cov{y}, xpB} = cov {ey, X6(X'X)_1X/ (XB+E)}

= cov {ep, x((X'X) ' X'E}
€1
= 0  since e is indep. of E =
pXp
e/
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— So

var{y}, — x)B} = var{y,} + var{x)B} — 2 cov{y}, x,B}
=Y +3 (x((X'X)"'x0) +0
=3 [14x((X'X) x|
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7. MLE’s of B and X

TXDp

Thus far, we have assumed F{e} = 0 and var{e} = X ® 1,
T

vec =

If we assume:
e ~Np,(0,¥xI1,)

npXx1

then MLE’s of B and X are
B = (X'X)"'X'Y

and
/ 1

A A

| o B e |

L _—_E
e b

1
X = —
n n

where
E~W,(n—-—q—1,%)

Proof: omitted.
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8. Model Corrected for Means Rewrite

Y= XB+E
nXxr
as
Y. = X. B, + E where ¢ = # of predictors =r — 1
nxp nXxXqqgXxp
and
Yir — Y1 Yi2—9Y2 - Yip —Yp
Y. = :
Ynl — Y1 Yn2 = Y2  Ynp — Yp
r11 — T.q L1q —f.q
X, =
Tnl — L.l - Lng —Cl_j.q
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Then ]:%c — S;xley

where S =

p+q variables (y1, -

AN

Y = g-l ]-n

Syy
Szy

Sy
Sxa:

Yp

is the sample covariance matrix of the

.,yp’ le,-..,itq)

1,| + X, B,
nXqqxp
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Hypothesis Tests (assuming e ~ N,,,{0, X ® I, })

Hy: By =0 (Test of overall regression)
gxp
,86 <+ 1 x p vector of intercepts
where B =
TXP

—agXxXp

Partition the total SS and CP matrix:

A / A A
Y'Y — (Y _ XB) (Y _ XB) IB'X'Y

pnnp

7

-~

- Y'Y-B'X'Y = E

To avoid inclusion of By = 0’ as part of the null hypothesis, we

subtract nyy’:

Y/Y L n}—l_}—’/ — le L E/X,-Y:+ é/X/Y L n}—’}—,/
corrected total SS & CP =E = H
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El Y'Y - BX’Y\ A
CE+H| [YY -nyy| I

e H is “large” when B 's are large

e The 4 MANOVA statistics can be calculated as functions of the
eigenvalues of E71H, (A1,..., \,):

~ Wilks”: A = [T'_, i

— Roy’s: 6 = )\

— Pillai’s Trace: V =>_._, 1+)\

— Lawley-Hotelling Trace: U =Y 7 | A

— Critical values (and p-values) based on approximate
F-distributions given on the MANOVA pages on these notes

. use:
s = min(p, q)
m=3(lg—p|—1)
N=3(n-—q-—p-2)
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o Essential dimensionality of E™'H is the essential dimensionality of
——"

pXp
B:. For example, a single non-zero eigenvalue (i.e., rank of By is 1)
gXxp
could be due to several causes:

1. By has only one nonzero row

= only one of the x’s predicts the y’s

2. B1 has only one nonzero column

= only one of the y’s is predicted by the x’s

3. All of the rows of By are linear combinations of each other
= x’s act alike in predicting y’s
lor, in other words]
All of the columns of B are linear combinations of each other

= only one dimension in the y’s as they relate to x’s
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o “Essential dimensionality” of E~'H is number of substantially
non-zero eigenvalues and takes value less than or equal to

s = min(p, q)
Essewtial dimensiona Ifiz

' — S
g. is m.y-"CCS’t V?s‘ 5 M'P:test

e A can also be calculated from the partitioned sample covariance

matrix of (y1,...,Yp, T1,...,%q)
Syy  Syaz
S _ | pxp  pxgq
(p+q) % (p+q) Szy Saixz
L gXp  4Xq_

using
S|
Sze|[Syyl

which is essentially a test of independence between y and x since
Independence of y and x = [S| = |S,,||Szz|
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Hy:B,=0 Tests on a subset of the x’s

Hypothesis states that the y’s do not depend on the last h of the
x’s. That is,

Hy:Bagqa =0

where

Bred (—(T—h)Xp

TXp Badd — h X D

Compare SS and CP matrix for full and reduced models:

Hgg = B'X'Y —B.X.Y <« difference in regression SS and CP

pPXp

and

Ecy= Y'Y — B'X'Y  « E matrix based on full model

pPXp
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Then

_ | Efu _ | Efu1
Tg—ht1, " yLq|T1,* yTg—h |Efull _|_Hd1ﬂ“ ‘Ered’

Y'Y - B'X'Y]
|Y/Y R B;ed ;‘edY|

Apahan_q_l

/l\
# of xs

e Note:

Y'Y —nyy’|
Tg—h+4+1,"""Tq|T1," 3 Tg—h (lY/Y_B, dX/ Yl)
re

<|Y’Y—1§’X’Y|)

red
Y'Y —nyy’|

Aran
Ared

— makes full vs. reduced testing simple to carry out
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e Note: 0, V, and U can be calculated from eigenvalues of EE&IHdiH
with
s = min(p, h)
1
m=(lh—pl 1)

1
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Subset Selection

Finding a subset of the x’s to include in a model

e Forward Selection

(Step 1)
Start with ) )
B, — 3;01 ?02 ?op
_/321 Bis sz_
and calculate
Ay, = |T‘?,{Y__B7?C_/?ﬂ ~Ap1n_2
yy'l

for i =1,...,q. Add the x; that minimizes A,, (as long as

Ay, < Ao pin—2 — stop otherwise)
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(Stepj+1,7=1,2,...)

Let x1,...,x; be the variables added in previous steps. Calculate

AZIZ»L'|331,...,CEJ' ~ Ap,l,n—j—l

for all ; among the ¢ — 7 remaining candidate variables. For the
r; that minimizes Ay, |z, . 2,

—add x; if Ay oy, 0, <Napin—j-1
— stop the procedure if Ay |5, . 2, > Napin—j—1

e Backward Elimination

Start with all 2’s and delete one at a time until the least valuable
remaining x is significant. For the m remaining x’s after a given

step, find the r; maximizing

AZE@'|$1,...,:B2'_1,$i_{_1,...,33m ~ Ap,l,n—m—l
_ dI‘Op €Lg if Axi|m1,...,azi_1,x¢+1,...,xm > Aa,p,l,n—m—l

— stop the procedure if @; if Ay, iz, vi 1 win,zm < Nap,ln—m—1
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e Stepwise

— Add most significant candidate x; if partial A is less than critical

value

— Then, remove least significant selected x; if partial A is greater than

critical value

e Best Subsets

Choose “best” subset of size £, for £ =1,...,q, with respect to

some criterion (e.g., a multivariate extension of Mallow’s C),, or

tr{S}, etc.)

After selecting a subset of the z’s, subset of y’s may be
selected using “stepwise discriminant” approach ... to be discussed later.
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ex | chemical reaction data

How are the responses (y1, y2, and y3) affected by the inputs
(r1, x2, and x3)?

y1 = % of unchanged starting material
y2 = % converted to the desired product
ys = % of unwanted by-product

r1 = temperature

To = concentration

T3 = time

e Regress y on x to obtain B and test B = 0, where B =

e Determine what the eigenvalues of E7'H reveal about the essential
rank of By and the power of the 4 (“MANOVA”) statistics.

NOTE: “MTEST/PRINT DETAILS” gives eigenvalues of

(E + H)_lH (517 s 758) and fz — 1_|>:i)\i7 and A\; = 1§Z€Z
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e Check the significance of x1x2, 123, T2T3, :L’%, :L’%, and :c%

adjusted for x1, z2, and x3
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ITI.C.ii Seemingly Unrelated Regressions (SUR)

e Standard multivariate regression:

Y =XB+E=
or ~ _ ) o ) ~ )
Y1 X 0 /31 €.1
= +
Y op ] I 0 X_ _Bp_ €.p
—— ~~ e
vec Y I ® X vec B vec =
PXp mXp

— Note: each y.; uses the same regressors X
nxr

— vec B=(1I® (X'X)"'X')vec Y
or

B = (X'X)"'X'Y is B.L.U.E. even though var{vec Y} =X @I

— What if each y.; uses different regressors X; 7
nXxXr;
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e SUR Model

Y. = )Qj/gj-+ €; (j::l,”.,p

nx1 nXrir;x1 nXx1

ex | y.; is the jth economic outcome for n regions and X; is the

matrix of economic indicators (unemployment, housing starts, etc.)
and the indicators used in the model are potentially different for
each outcome—that is, X, # X
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e Model assumptions:

OR

Y1
Y2

_Xl

nXxXri

y* ::)(*ﬁr<+_e*
cov{ez-, ej} = UijIn

= var{e*} = X ®I,= X"

pPXp

< independent observations
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e OLS estimator

(X’1X1)_1 X/1Y-1 Bl,OLS
Bows = (X7X7) 7 XTy" = ; -|

(X5X5) - XY p Bp.oLs.

is not BLUE in general
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— Zyskind condition states that the OLS estimator is BLUE if and
only if there exists a matrix Q such that X" X* = X*Q

* In standard multivariate regression, ¥ = ¥ ®I,, and

pPXD
X*=1,® X and

nxr

SFXF = (2 ®1n> (Ip® X)
PXD nxr

= XY®X

_ <1p® x) (2 ®1n)
nxr PXP

7 \\

Ve V.

X * Q
Therefore, OLS is BLUE under standard multivariate regression
assumptions
x In SUR case, there is no simple way of writing X*, and in general,
there exists no Q satisfying X*X* = X*Q
A 3k —1 " — "

154



III.C.iii Canonical Correlation Analysis

Objective: summarize the linear relationship between two groups of
variables y = (y1,...,%p) and x = (x1,...,24)

— Neither x nor y considered “dependent”

— Multivariate extension of the squared multiple correlation

coefficient (used to relate a single response y with x).

e Consider a single random variable y and a random vector x
Recall

S S
yy Yy
y Syy Syaz if p=1
var =S = = Ix1
- - - - _ gxq
and
/
y Ryy Rya| i p=1 | 1
COIT =R = =
L i qxq _ l il




Squared multiple correlation between y and (z1,...,x,) is

_1S
xx OrYy ) —1

T ry:vRa;:B riﬁy
Syy

R2 Syx S

ylx —

where R;x is themaximum correlation between y and a linear

combination of the z’s

e Extending to the case with y = (y1,...,y,) and x = (z1,...,2,), a

measure of association between y and x is

R?w — |S;;SWS;£SW\ — HT’LZ (s = min(p, q))
i=1

2 2 - ~1 ~1
where 77, ...,ry are the eigenvalues of S, 'S, S, Sy, .

— R%, too small and too heavily dependent on smallest

eigenvalues.

— Instead, work directly with r%,..., 72 called the “squared

canonical correlations”
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e Largest squared canonical correlation r# is the maximum squared
correlation between a linear combination of x and a linear

combination of y.

r? = corr{ajy, bix} = max corr{a'y, b'x}
—~~ —~~  ab

U1 U1

— w1 = ajy and v; = b}x are the “first canonical variates”

— First s eigenvalues of S;xl

\ &

Sg[;yS;y1 S, are same as first s eigenvalues

-~

gxq
-1 1 . .
of S,/ SyzS, . Szy, but eigenvectors are different.

aVa

PXp
— (S,,8y2S;2 8y — I, )a=0

x If ¢ < p, only q of the eigenvectors a are meaningful

(Sz2SeyS,, Sye —7°I;)b =10
x If p < q, only p of the eigenvectors b are meaningful
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e The canonical correlations r1,...,rs respond to the s pairs of

canonical variates:

J/

the s nonredundant
dimensions of the
relationship

> (s =min(p,q))

u; = aly and wv; =Dbix

us = aby and wve = bix

us =a,y and vs=Dblx
/

— u;’s are uncorrelated (so are v;’s)
— u; uncorrelated with v; for ¢ # j

e If software requires a symmetric matrix to obtain eigenvalues and

elgenvectors, use

S;2/%S4yS.. Sy2S5, "2

. : . 1/2
which has eigenvalues r%, .. ,rg and eigenvectors Sxé b, and
—1/2 1 —1/2
Syy SyaS,. SwySyy
which has eigenvalues 72 r2 and eigenvectors Sl/ ’a,
g 1s+--»"s g yy
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e Importance of the relationship between u; and v; (that is,
importance of 7?) can be judged by the relative size of \; (the
eigenvalues of E~1H):

2521 Aj

= 1g-1 :
o a/L — Ty Syy Sym bz

_ 1 g-1
gx1 qxq gxp
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e When interpreting the canonical variates, we prefer to use
standardized coefficient vectors

Sy, O 0
0 sy, 0
C; = ag,
0 0 Sy,
and _ _
Sz, 0 0
0 sz, 0
d; = b;
0 0 Sz,

where s,, = y/var{y;} and s,, = \/var{z;}.

— More simply, conduct analysis using Ry_y1 RWR;;RW and

R, R.,R, /Ry, which have eigenvectors c; and d;, respectively,
and have eigenvalues 7%, ...,r2.
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e Properties of canonical correlations:
2

— 77 invariant to change of scale on y’s or z’s
— 11 exceeds the absolute value of the correlation between any y and

any or all of the z’s.

—r? = Riﬂx = R,%”y (where Rfmx is the squared multiple correlation
between u; and (x1,...,24))
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Statistical Inference:

e Hy: no linear relationship between y’s and x’s

or

H() . B1 =0
qXxp

or

Hy: independence of y and x

e Test statistic:

s R,
SyullSeal ~ Ry [[Ro] ~ Pr0m 0

q

— Aq,p,n—l—p

. q
since Ap gn-1—¢ = Ngpn—1-p

[An exact F' test exists for s = min(p, q) < 2, see A-to-F
conversions in the MANOVA section]
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e A=T[,_,(1—r?)is afunction of r%,...,r2, as are Pillai’s (V),

Lawley-Hotelling (U), and Roy’s Largest root (0)
2

— As strength of relationship between x and y increases, r?’s increase

and A decreases

— Testing if the s canonical correlations (combined) are significant

— Note: If p=1,A =1 — R?

ylx
— If test rejects, next consider how many r?’s are significant

e Hy: The canonical correlations r,,,...,rs are non-significant

S

2

1=m
or Aq—m+1,p—m+1,n—m—p
: q
[Slnce AP,VH,VE — AVH,I?,VH—H/E—I?]
— An approach: Check As, ..., A; to determine number of significant

r? values.
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Interpretation of canonical variates (e.g., u; = ajy and v; = bx)

Wish to assess the contribution of each variable to the canonical
2

correlation ;.
— standardized coeflicients

— correlations between y; and u; = a’y

e Standardized coefficients

Use c¢; and d; to account for differences in scaling among the
variables

— Absolute values of coefficients ¢; show contribution of each y;

in the presence of the other y;’s.

— Add or remove y;’s = c¢; changes
Y g

We want this property in multivariate analysis!!
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e Correlations between y; and u; = a;-y (and between x; and
’Uj = b;X)
— More frequently used and widely claimed to yield more valid

interpretation of canonical variates (a.k.a. “structure coefficients”)

— corr{y;, u; } is “stable” (not dramatically different) if we add or

remove ¥;’s ... sounds nice, but it’s not!

In fact, these correlations provide no information about the
multivariate contribution of the variable y; to the correlation

structure. (Analogous to T-test vs. p univariate t-tests.)

Rencher (1988, 1992) showed that

S

[ [ (corr{ys, u;})*r} = R

j=1
where Rfmx is the multiple correlation between y; and (x1,...,z,)
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— Although corr{y;, u;} might seem to quantify the importance of y;
in a multivariate relationship with x in the presence of the other y

variables, it summarizes only a univariate relationship.

ex | chemical reaction data

? How many 7%’s are necessary?

? Interpret u; and v;.

¢ Recall \/R] & = \/Zizl(cor‘r{xi,m})%?.

e First canonical correlation is mostly due to relationship of:

temperature and concentration (suppressed by xixs, and to a lesser
degree z1x3 and x7) with: % changed.
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INPUTS dy; corr{x;,v1} R?

zily
x1 = temperature  **  5.01 .69 .69
ro = concentration **  5.86 23 24
T3 = time 1.65 45 D1
X129 R _3.92 41 43
X123 * 2230 .54 .58
ToI3 0.93 45 A48
T3 * 0 _2.67 .69 .69
22 11.23 23 23
2 0.57 42 AT
YIELDS c1; corr{y;, uy} R?i x
y; = % unchanged ** -1.54 -.996 987
Yo = % converted -0.21 .64 .92

y3 = % by-product -0.47 167 .85 91




