
IV. Analysis of Covariance Structure

IV.A. Principal Component Analysis

• Seek to maximize the variance of a linear combination of the

variables

• Purpose: explain the covariance structure of a set of variables

(one-sample technique)

• Often useful as inputs to another analysis

– Principal Component Regression involves converting p collinear

predictors into k < p independent components

∗ Often yields better estimates of regression coefficients
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A Geometric Motivation:

• Suppose we have an ellipsoidal swarm of points where x1, . . . , xp

are correlated.

• Ellipsoidal swarm of points not parallel to any of the x1, . . . , xp axes

• Wish to find “natural axes” for the points, that is, the axes of the

ellipsoid
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• Assuming xi, i = 1, . . . , n, are centered at 0, we rotate the axes by

multiplying xi by an orthogonal matrix A:

yi = Axi

– Distance from origin is same for both old and new data

y′iyi = (Axi)
′(Axi) = x′i A

′A︸︷︷︸
A is

orthogonal

xi = x′ixi

– If A were chosen to rotate axes in harmony with ellipsoid, then

var{y} = Sy = ASA′ =


s2
y1 0

s2
y2

. . .

0 s2
yp


• But, by definition, the matrix A which diagonalizes S is a matrix

containing the normalized eigenvectors of S.
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• yi1 = a′1xi, yi2 = a′2xi, etc. are the “principal component scores”

for subject i, where var{yij} = s2
yj = λj (the jth ordered eigenvalue

of S).

– Since a1 specifies the single dimension of greatest separation among

the data, it is expected that var{y1} should have largest variance

among (s2
yj ) and var{yp} should have smallest variance.

• Number of “significant” eigenvalues indicates number of “essential

dimensions” in data.

Proportion
of variance
explained

(using λ1, . . . , λk)

=
λ1 + λ2 + · · ·+ λk
λ1 + λ2 + · · ·+ λp

=
λ1 + λ2 + · · ·+ λk∑p

i=1 sii

– We then represent the p-dimensional data (xi1, . . . , xip) where k < p

4



An Algebraic Motivation

We want a linear combination of x with maximal variance

v̂ar{a′x} = a′Sa

Since a′Sa has no max for arbitrary a, we wish to maximize (for a 6= 0)

λ =
a′Sa

a′a
(1)

⇒ a′Sa = λa′a

⇒ a′(Sa− λa) = 0

⇒ Sa− λa = 0 since a in ∗ 6= 0

⇒ (S− λI)a = 0

So a1 (the normalized eigenvector associated with largest eigenvalue)

maximizes λ in (1) at the value of:

λ1 =
a′1Sa1

a′1a1
= a′1Sa1 = var{y1}
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• kth p.c. (k = 2, . . . , p) is defined by ak (the eigenvector

corresponding to the kth largest eigenvalue) since

max
a⊥ a1,...,ak−1

a′Sa

a′a
= λk

with the maximum occurring at a = ak
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Notes:

1. P.C.’s yi = a′ix and yj = a′jx are orthogonal (and uncorrelated) for

i 6= j

2. “Component scores” can be calculated for each individual:

yi1 = a′1xi

yi2 = a′2xi

...

yip = a′pxi

or

Y
n×p

=
[
y·1 · · · y·p

]
= X
n×p

A
p×p

where A =
[
a1 · · · ap

]
.
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Plotting the first 2 or more component scores against each other

can be useful for checking:

• non-linearity (indication of non-normality)

• outliers

• clusters or groupings

3. “Component loadings” (elements of ai) are useful for gaining

insight about which variables are important in the principal

component

∗ Interpretation of standardized loadings is not the panacea that it is

in discriminant analysis or canonical correlation analysis . . .

4. Principal components are NOT scale invariant ©̈_
• Orientation of P.C.’s changes if we convert from: inches to

centimeters, pounds to kg, original scale to standardized scale, etc.
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• No simple relationships exist between:

– λi and λ
(R)
i

– λi

Σλi
and

λ
(R)
i

Σλ
(R)
i

– a1 and a
(R)
1
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• P.C. #1 (based on S):

y1 = .0202x1 + .9998x2

• P.C. #1 (based on R):

y1 = .7071

(
x1 − x̄1√

s11

)
+ .7071

(
x2 − x̄2√

s22

)
= .7071 (x1 − x̄1) + .0707 (x2 − x̄2)

– Even expressing the p.c.’s from R in terms of the original

(unstandardized) variables gives a different component
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5. Components for a given R are not unique to that matrix. E.g.,

R =

1 r

r 1


always has eigenvalues λ1 = 1 + r and λ2 = 1− r, regardless of the

value of r, and the corresponding principal components are:

y1 = .7071

(
x1 − x̄1√

s11

)
+ .7071

(
x2 − x̄2√

s22

)
and

y2 = .7071

(
x1 − x̄1√

s11

)
− .7071

(
x2 − x̄2√

s22

)
Question: Is it reasonable to assign a meaningful interpretation to

the p.c.’s from the correlation matrix?

6. P.C.A. can still be carried out with a singular S matrix
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7. All variables uncorrelated ⇒ the variables are the P.C.’s

• Characteristic equation

0 = |S− λI| =
p∏
i=1

(sii − λ)

has solutions λi = sii with eigenvectors

ai =
[
0 · · · 0 1 0 · · · 0

]
ith P.C.:

yi = a′ix = xi

• So, 1st P.C. is xi with largest variance

2nd P.C. is xi with second largest variance, etc.

8. When one or more variables has dramatically larger variance than

others, those variables will dominate the 1st P.C.

12



9. All correlations/covariances are positive ⇒ all elements of a1 > 0

• So, a1 will be similar to an average or sum and can be interpreted

as an overall measure of “size”

• Since a2, . . . ,ap are orthogonal to a1

(a′1a2 = a′1a3 = · · · = a′1ap = 0), a2, . . . ,ap will each contain

positive and negative coefficients. These weighted differences can be

interpreted as aspects of “shape”

– These patterns often still hold true when only most of covariances

are positive
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Interpretation of P.C.’s

• Examine coefficients (although PC’s from S and R require different

interpretations)

• Correlation between ith variable xi and jth P.C. yj can be

calculated to identify which variables are most important

– Not useful in a multivariate context (Rencher, 1992)

(corr{xi, y1})2
+ · · ·+ (corr{xi, yk})2

= R2
xi|y1,...,yk

Squared correlations between xi and the P.C.’s reflect the

univariate relationship between xi and P.C.’s

∗ NO info about importance of xi in the presence of

x1, . . . , xi−1, xi+1, · · · , xp
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ex Football helmet design

3 groups of subjects:
1 = high school football players
2 = college football players
3 = non-football players

6 variables:
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Which is the high school player?

16



Number of Principal Components

How many do we retain to sufficiently capture and summarize the

covariance/correlation structure?

Approaches:

(1) Retain enough components to account for 100k% of the total

variability (where k is .80 or .90 or . . .)

(2) Retain components whose variance (eigenvalue) is greater than the

average eigenvalue (Σλi/p)

[For PCA on correlation matrix, this is equivalent to retaining yi

when λi > 1 =⇒ sometimes called the “rule of 1”]

(3) Use scree plot to find natural break between “large/important”

components and “small/unimportant” components [scree = “rocky

debris at base of a cliff”]

∗ Approaches (1), (2), and (3) lack theoretical justification

ex football helmet data
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(4) Test that the last k population eigenvalues (denoted

λpop
p−k+1, . . . , λ

pop
p ) are equal (and hence, usually small):

H0 : λpop
p−k+1 = · · · = λpop

p

• Calculate λ̄ = 1
k

∑p
i=p−k+1 λi

• u =
(
n− 2p+11

6

) (
k ln λ̄−

∑p
i=p−k+1 lnλi

)
approx∼ χ2

1
2 (k−1)(k+2)
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IV.B. Factor Analysis and S.E.M.

ref. Bollen (1989), Fuller (1987)

Brief Roadmap for Latent Variable Models:

• Use observable variables in order to understand nature of, and

relationship between latent (unobservable) variables.

• Traditionally, latent variables have been concepts or constructs

which are impossible to measure directly

– attitudes

– aptitudes/abilities

– intelligence

– experience

– quality

– etc.
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• Path diagrams show relationship between
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∗ Factor Analysis Models:

• Explore and describe structure in the p observable variables using

model with k < p factors

• Represent/validate subject matter theory

ex Path diagram
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∗ Structural Equation Models:

• Objectives of F.A.

• Model causal relationships between latent variables
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Factor Analysis Model:

{
x
p×1

= µ
p×1

+ Λ
p×k

f
k×1

+ e
p×1

}
(IV − 1)

or 

x1 = µ1 + λ11f1 + λ12f2 + e1

x2 = µ2 + λ21f1 + λ22f2 + e2

...

xp = µp + λp1f1 + λp2f2 + ep


λij : “factor loading” of ith variable on jth factor (not an eigenvalue)

µi = mean of ith variable

fj = jth common factor

ei = ith error (“specific factor”)
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{
x
p×1

= µ
p×1

+ Λ
p×k

f
k×1

+ e
p×1

}
(IV − 1)

• f and e are independent

• E{e} = 0 and var{e} = Ψ
p×p

=


ψ1 0

. . .

0 ψp



• var{f} = Φ
k×k

=


φ11 φ21 · · · φk1

φ21 φ22 · · · φ2k

...
...

. . .

φk1 φk2 · · · φkk

 and E{f} = 0

– So many unobservable quantities that the factor model cannot

be verified from the data . . . need further assumptions.
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IV.B.i. Exploratory Factor Analysis (via the Orthogonal

Factor Model)

Key Assumption:

Facilitate verification of the factor analysis model (IV-1) by assuming

var{ f
k×1
} = Φ

k×k
= Ik (IV-2)

Thus, all factors fj are independent with zero mean and unit variance.

→ Underlying “sources” affecting the observed variables are

non-redundant
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Under model (IV-1) and orthogonal factor assumption (IV-2):

var{x} = Λvar{f}Λ′ + var{e}

= ΛIΛ′ + Ψ

= ΛΛ′ + Ψ

cov{x, f} = {µ+ Λf + e, f}

= cov{Λf , f}

= Λ

var{xi} = [λi1, λi2, . . . , λik][λi1, λi2, . . . , λik]′ + ψi

σii︸︷︷︸
↑

variance for
variable i

= λ2
i1 + λ2

i2 + . . .+ λ2
ik︸ ︷︷ ︸

↑
h2
i = communality

for variable i

+ ψi︸︷︷︸
↑

specific variance

for variable i
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Σ = ΛΦΛ′ + Ψ

Notes:

1. Refer to var{x} as Σ[θ] where the argument θ is a vector

containing all model parameters affecting var{x}.
• In general,

θ = (λ′

↑
vector

containing

all unique

factor
loading

parameters

, φ′

↑
vector

containing

all unique

params in

Φ = var{f}

, ψ′

↑
contains
ψ1, . . . , ψp

)′

• For factor model (IV-1) and orthogonality assumptions (IV-2) :

θ
(pk+p)×1

=

(
λ′

1×pk
, ψ′

1×p

)′
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2. Structure of Σ[θ] = var{x} can be visualized as

when the model holds. Factor analysis evaluates whether

covariance matrix estimate (i.e., S) fits the above structure
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3. Non-uniqueness of Λ

Loadings in x = µ+ Λf + e can be multiplied by an orthogonal

matrix without affecting the model fit.

x = µ+ Λf + e

= µ+ ΛT︸︷︷︸
Λ∗

T′f︸︷︷︸
f∗

+e, where T
k×k

T′ = T′T = Ik

Note that. . .

29



E{f∗} = E{T′f} = T′0 = 0

var{f∗} = T′var{f}T

= T′IkT = Ik

var{x} = Λ∗Λ∗
′
+ Ψ

= (ΛT)(ΛT)′ + Ψ

= ΛTT′Λ′ + Ψ

= ΛΛ′ + Ψ

var{xi} = λ∗i
′
λ∗i︸ ︷︷ ︸

communality

after transform

+ψi

= λ′iT
′Tλi + ψi

= λ′iλi︸︷︷︸
communality

before transform

+ψi

. . . SO any orthogonal transformation of Λ is equally valid.
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4. Principal Components Analysis vs. Factor Analysis

• P.C.A. and E.F.A. are purely exploratory where confirmatory F.A.

and S.E.M. can be used for modeling and inference

• P.C.’s are linear combinations of the p observed variables

PC1 = y1 = a′1x

In F.A., the p observed variables are expressed as linear

combinations of the factors

x1 = µ1 + λ11f1 + λ12f2 + · · ·+ λikfk + e1

(Factor scores are linear combinations of the p observed variables)

• Removing one or more P.C.’s does not affect the nature of the other

P.C.’s

Removing one or more factors will change the factor loadings and

factor scores associated with other factors when using any

estimation method other than “principal component method”
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Estimation Methods

∗ Principal Component Method

Let d1, . . . , dp be the p ordered eigenvalues of S (or R) and let

a1, . . . ,ap be the corresponding eigenvectors. Let A =
[
a1 · · · ap

]

and D =


d1 0

. . .

0 dp


We neglect Ψ̂ in

S ∼= Λ̂Λ̂
′
+ Ψ̂
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and say

S = A
p×p

D
p×p

A′
p×p

∼= A1
p×k

D1
k×k

A′1
k×p

(
retaining only k < p factors,

where A1 = [a1 . . . ak]

and D1 = diag(d1 . . . dk)

)
= (A1D

1/2
1 )(A1D

1/2
1 )′

= Λ̂Λ̂
′

⇒ Λ̂ = A1D
1/2
1

and

Ψ̂ = S− Λ̂Λ̂
′

(ψ̂i = sii −
k∑
j=1

λ̂2
ij︸ ︷︷ ︸

h2
i or

“communality”

)
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or, if using R

Ψ̂ = R− Λ̂Λ̂
′

(ψ̂i = 1−
k∑
j=1

λ̂2
ij︸ ︷︷ ︸

h2
i

)

• Proportion of variance due to jth factor is:

dj
tr{S}

(where dj also equal to
∑p
i=1 λ

2
ij)
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Notes about principal component method:

1. Before “rotation,” loadings on jth factor (λ1j , . . . , λpj) are

proportional to coefficients on jth P.C.

2. Before “rotation,” loadings on a retained factor are unchanged by

adding/deleting other factors.

3. “Principal Factor Method” extends the “principal component

method” by taking an initial error variance estimate Ψ◦ and

defining

Λ̂ = A∗1D∗1
1
2

where A∗D∗A∗′ is the spectral decomposition of S−Ψ◦ (or

R−Ψ◦). Process can be iterated since Ψ̂ is updated after each

estimation of Λ. For the (i+ 1)th iteration, let (ψ̂1, . . . , ψ̂p) be

equal to diag{S− Λ̂
(i)

Λ̂
′(i)
}.
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• An initial estimate of h2
i (when using R−Ψ◦) is

ĥ2
i = 1− 1

rii
= R2

xi|x1,...,xi−1,xi+1,...,xp

where rii is the ith diagonal element of R−1. So,

ψ̂
◦
i = 1−

(
1− 1

rii

)
=

1

rii

or, if using S−Ψ◦

ψ̂
◦
i = sii −

(
sii −

1

sii

)
=

1

sii

where sii and sii are ith diagonal elements of S and S−1,

respectively.
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4. Choosing the number of factors

(a) Choose k equal to number of factors necessary to account for 80%,

85%, or 90% of the total variance tr{S} (or tr{R}).
(b) Choose k equal to: number of eigenvalues of S greater than tr{S}

p

(or number of eigenvalues of R greater than 1).

(c) Use scree plot to determine which eigenvalues are associated with

the cliff (retain) and which eigenvalues are the “scree” (remove).
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∗ Maximum Likelihood Method

Assuming x ∼ Np(µ,Σ), we can find Λ̂ and Ψ̂ such that

L(µ,Σ|x1, . . . ,xn) is maximized subject to a uniqueness condition

Λ′Ψ−1Λ = ∆
↑

a diagonal

matrix

As before, communalities are

ĥ2
i =

k∑
j=1

λ2
ij

and proportion of variance due to jth factor(∑p
i=1 λ

2
ij

)
tr{S}
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→ Choosing # of factors

• Can use the 3 methods suggested with the principal

component/principal factor methods.

• When using ML method, more often we test H0 : Σ = ΛΛ′ + Ψ

using Bartlett’s modified likelihood ratio statistic

(
n− 2p+ 4k + 11

6

)
ln

(
|Λ̂Λ̂

′
+ Ψ̂|
|S|

)
∼ χ2

1
2 [(p−k)2−(p+k)]

– Degrees of freedom for test of H0 : Σ = ΛΛ′ + Ψ is equal to the

number of independent parameters in the basic factor analysis

model (IV-1) subtracted from number of unique sample

statistics in S (and x̄).
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So,

df =

(
1

2
p(p− 1) + p

)
−
(
pk +

1

2
k(k + 1) + p+ p− k2

)
=

1

2

[
(p− k)2 − (p+ k)

]

In fact, maximum likelihood estimation yields valid solutions

only if df ≥ 0 and test of H0 valid only if df > 0.
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Rule-of-thumb: Identifiability of a factor analysis model:

(p− k)2 must be ≥ (p+ k)

or

k ≤ 1

2

(
2p+ 1−

√
8p+ 1

)
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Factor Rotation

As previously noted, factor loadings are unique only up to

multiplication by an orthogonal matrix that rotates the loadings.

– Rotated loadings (and factors) reproduce the covariance matrix

S ∼= Λ̂Λ̂
′
+ Ψ̂

= Λ̂T︸︷︷︸T′Λ̂︸︷︷︸+Ψ̂

= Λ̂
∗
Λ̂
∗′

+ Ψ̂

– Rotate Λ̂ to obtain more interpretable structure— “simple

structure” is where each variable loads only on one factor is the

ideal.
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– “Complexity” of variable is number of factors on which a

variable loads highly—we want low complexity for variables.
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• Orthogonal Rotation

– Communalities stay the same

h2
i =

k∑
j=1

λ2
ij =

k∑
j=1

λ∗ij
2 = h∗i

2

but variance accounted for by factor j changes with rotation

p∑
i=1

λ2
ij 6=

p∑
i=1

λ∗ij
2

– “Varimax Rotation”

Choose T in Λ∗ = ΛT =
(
λ∗ij
)

such that

1

p

k∑
j=1

 p∑
i=1

(
λ̂∗ij

ĥi

)4

− 1

p

(
p∑
i=1

λ̂∗2ij

ĥ2
i

)2


is maximized.
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Essentially, varimax “spreads out” the loadings for each factor

ex

(λ∗1j , λ
∗
2j , λ

∗
3j , . . . , λ

∗
pj) = (.95,−.04, . . . , .12︸ ︷︷ ︸

high variability

)

has simpler structure (more desirable) than

(λ∗1j , λ
∗
2j , λ

∗
3j , . . . , λ

∗
pj) = (.85, .62, . . . , .71︸ ︷︷ ︸

low variability

)
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• Oblique “Rotation” Transformation

– f∗ = Q′f where var{f∗} = Q′IQ = Q′Q 6= I

– Axes are no longer perpendicular (factors are correlated)

– Communalities are different

47



Factor Score Estimation

After we have estimates of µ,Λ, and Ψ, we can use the model for the

tth individual

xt
p×1
− x̄ = Λ̂ ft

k×1
+ ε, v̂ar{ε} = Ψ̂

to obtain estimates of the unknown quantities ft.

• Weighted Least Squares Method

f̂t
k×1

= ( Λ̂
′

k×p
Ψ̂
−1

p×p
Λ̂
p×k

)−1 Λ̂
′

k×p
Ψ̂
−1

p×p
( xt
p×1
− x̄
p×1

)

• Regression Method

– Treats factors and observations as jointly normally distributed

f̂t = Λ̂
′
(Λ̂Λ̂

′
+ Ψ̂)−1(xt − x̄)

or

f̂t = Λ̂
′
S−1(xt − x̄)
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ex Stat 2301 Grades

• Principal Component Method

– Varimax (orthogonal) rotation

– Promax (oblique) rotation

• Maximum Likelihood

– Varimax rotation
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IV.B.ii Confirmatory Factor Analysis (CFA)

Because of the indeterminacy in our model

x = µ+ Λf + e (IV-1)

= µ+ ΛT︸︷︷︸
Λ∗

T′f︸︷︷︸
f∗

+e

we cannot assign any practical physical meaning to Λ or f

The approach of CFA is to choose a sensible parameterization to make

parameter estimates unique.
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A widely used parameterization is the “errors-in-variables” or

“measurement error” model:

 x1
(p−k)×1

x2
k×1


︸ ︷︷ ︸

x

=

 β0
(p−k)×1

0
k×1


︸ ︷︷ ︸

µ

+

 B
(p−k)×k

Ik


︸ ︷︷ ︸

Λ

f + e

• Defines k of the variables to be equal to one of the factors plus

error.

• Allows meaningful physical interpretation and statistical inference

associated with model parameters (e.g., λij).

ex Stat 2301 Grades

As an expert in statistical education, I want to test my theory that

course assignments (excluding group assignments) are functions of 2

factors associated with daily effort and knowledge mastery.
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Specifically, I hypothesize:

Labmean = β01 +λ12f2 +e1

PQmean = β02 +λ21f1 +λ22f2 +e2

Exam1 = β03 +λ31f1 +e3

Exam2 = β04 +λ41f1 +e4

ExamFin = f1 +e5

HWmean = f2 +e6

• Like an errors-in-variables regression in which predictors (f1 and

f2) are only observed in their error-contaminated states (f1 + e5

and f2 + e6)

• f1 now constrained to have same mean as Examfin with

var{f1} ≤ var{ExamFin}. In fact, we can consider f1 to be an

error-free version of ExamFin. (although f1 is in fact estimated

using all the variables).
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• Parameters are uniquely determined so interpretation and inference

are feasible. For example,

H0: PQmean is not affected by knowledge mastery

is equivalent to

H0 : λ21 = 0

and can be tested with

t = λ̂21

s.e.(λ̂21)

• C.F.A. model allows for standard statistical model-building and

model assessment using goodness-of-fit (χ2) test.
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• Note that the errors-in-variables parameterization removes the

factor indeterminacy by replacing a k × k portion of

Λ =


λ11 · · · λ1k

...
...

λp1 · · · λpk


with the full rank matrix Ik to obtain

Λ =



λ11 · · · λ1k

...

λ(p−k),1 · · · λ(p−k),k

1 0

. . .

0 1


BUT, any full rank k × k matrix of constants could be placed in k

of the rows of Λ to yield an identified model.
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• When a full-rank k × k matrix of constants replaces k rows of Λ,

we have as parameters:

? p means (p− k in β0, plus E{f1}, . . . , E{fx})
? (p− k)k loadings in Λ

? 1
2k(k + 1) unique elements in Φ

? p specific variances ψ1, . . . , ψp

• Because the p mean parameters can be (optionally) estimated with

the p sample means, the difference between [# of statistics in S

and x̄] and [number of parameters] is

df =
1

2
p(p+ 1)− {(p− k)k +

1

2
k(k + 1) + p}

=
1

2
[(p− k)2 − (p+ k)] ← df for a χ2 GOF test

When Λ,Φ,Ψ have additional constants, the df is larger:

df =
1

2
p(p+ 1)− # of parameters in θ = (λ′, (vech Φ)′,ψ′).
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• Basic estimation approach: Estimator θ̂ chosen to minimize the

difference between S and Σ[θ] over θ ∈ parameter space

Estimation and Inference for C.F.A. Model Parameters

Develop estimators assuming

x ∼ Np(µ[θ],Σ[θ])

⇒ (n− 1)S ∼Wp(Σ[θ], n− 1)

We can then argue that these estimators (and associated inferential

methods) are valid even when x is NOT normal (see Anderson and

Amemiya, 1988; Amemiya and Anderson, 1990)
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∗ Maximum Likelihood Estimator

Likelihood (under Wishart):

L(Σ[θ],S) = constant× |Σ[θ]|−n/2 exp

{
−1

2
tr
{
nS (Σ[θ])

−1
}}

Define −2 log(likelihood ratio) as :

`(θ,S) = n
(

log |Σ[θ]|+ tr
{

S (Σ[θ])
−1
}
− log |S| − p

)
• θ̂ML minimizes `(θ; S) over parameter space Θ

• `(θ̂ML; S)→ χ2
1
2p(p+1)−q

is a goodness-of-fit statistic where θ is q × 1 and
1

2
p(p+ 1)︸ ︷︷ ︸

=p∗

is # of

statistics in S.

– Reject H0 : “Σ[θ] model holds” if `(θ̂ML,S) > χ2
p∗−q,α
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Some definitions:

• Let A =

 a1 a2 · · · ap

 be p× p and symmetric. Then,

– vec A =


a1

a2

...

ap


p2×1
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– vech A =



a11

a21

...

ap1

a22

a32

...

ap2

a33

a43

...

app


(

1

2
p(p+ 1)

)
︸ ︷︷ ︸

p∗

×1
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– For any p× p symmetric A, there is a p2 ×

p∗︷ ︸︸ ︷(
1

2
p(p+ 1)

)
matrix

Hp such that vec A = Hpvech A

ex p = 2 
a11

a21

a12

a22


︸ ︷︷ ︸
vec A
4×1

=


1 0 0

0 1 0

0 1 0

0 0 1


︸ ︷︷ ︸

H2
4×3


a11

a21

a22


︸ ︷︷ ︸
vech A

3×1
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– H+
p

p∗×p2
= (H′pHp)

−1H′p (Moore-Penrose generalized inverse)

So for any p× p symmetric matrix A

H+
p

p∗×p2
vec A︸ ︷︷ ︸
p2×1

= H+
p

p∗×p2
Hp
p2×p∗

vech A︸ ︷︷ ︸
p∗×1

= vech A

ex p = 2

H+
2 =


1 0 0 0

0 1
2

1
2 0

0 0 0 1


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Lemma:

If (n− 1)S ∼Wp(Σ[θ], n− 1)

– E{vech S} = vech Σ[θ]

– var{vech S} = 2
n−1 H+

p (Σ[θ]⊗Σ[θ])H+
p
′︸ ︷︷ ︸

p∗×p∗

∗ Note that because X ∼ Np, the 4th moments of X are functions

of 2nd moments

Further, if Σ[θ] is positive definite

– (var{vech S})−1 = n−1
2 H′p

(
(Σ[θ])−1 ⊗ (Σ[θ])−1

)
Hp

Proof: see Fuller, 1987, p. 386

Define

V[θ] =
2

n− 1
H+
p (Σ[θ]⊗Σ[θ])H+

p
′

and

V̂ =
2

n− 1
H+
p (S⊗ S)H+

p
′
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Least Squares Estimator

Let

q(θ; S) = (vech S− vech Σ[θ])′V̂−1(vech S− vech Σ[θ])

• θ̂LS minimizes q(θ; S) over parameter space Θ

• q(θ̂LS ; S)→ χ2
p∗−q,α (p∗ = 1

2p(p+ 1))

Iteratively Reweighted Least Squares Estimator

θ̂
(i)

IRLS minimizes

w(θ; θ̂
i−1

IRLS ,S) = (vech S−vech Σ[θ])′
(
V[θ̂

(i−1)

IRLS ]
)−1

(vech S−vech Σ[θ])

• Iterative procedure converges to θ̂ML (approximately...there are

numerical/computational issues)

• w(θ̂IRLS ; θ̂IRLS ,S)→ χ2
p∗−q,α
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Goodness-of-fit measures for testing H0 vs. H1

H0 : the hypothesized model is correct.

H1 : the hypothesized model is incorrect (more factors are needed).

• `(θ̂ML; S)→ χ2
1
2p(p+1)−q

• Bentler’s CFI: scaled reduction of lack of fit when using the

specified model instead of a baseline model such as the

independence model:

y = µ+ ε

CFI = 1− max(χ2
M − dfM , 0)

max(χ2
B − dfB , χ2

M − dfM , 0)

Hu and Bentler (1999) recommend that CFI values greater than

0.95 indicate a good fit, although other authors argue that values

greater than 0.90 are acceptable.
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• RMSEA: excess lack of fit associated with the hypothesized model

RMSEA =

√
1

n− 1

max(χ2
M − dfM , 0)

dfM

Hu and Bentler (1999) recommend that an RMSEA value less than

0.06 indicates a good fit.

• SRMR: quantifies the difference between the sample covariance

matrix for the data (S) and the model-constructed estimates of the

covariance matrix [Σ(θ̂)]

SRMR =

√√√√ 2

p(p+ 1)

p∑
i=1

i∑
j=1

(sij − σij)2

siisjj

where sij and σij are the (i, j) elements of S and Σ(θ̂),

respectively. Hu and Bentler (1999) recommend that SRMR values

less than 0.08 indicate a good fit, although other authors argue

that values less than 0.10 imply an adequate fit of the model.
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Inference for θ

Regardless of distribution of x, define Γ
p∗×p∗

= var{vech S}

• Note

vech S =
1

n− 1

n∑
t=1

vech ((xt − x̄)(xt − x̄)′)︸ ︷︷ ︸
zt

p∗×1

=
1

n− 1

n∑
t=1

zt
p∗×1

and Γ̂ = var{ 1
n−1

∑n
t=1 zt} = 1

(n−1)2

∑n
t=1(zt − z̄)(zt − z̄)′

When θ̂ is θ̂LS or θ̂ML,

v̂ar{θ̂} = (F̂′(V[θ̂])−1F̂)−1F̂′(V[θ̂])−1Γ̂(V[θ̂])−1F̂(F̂′(V[θ̂])−1F̂)−1
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When the null model holds and xt ∼ Np,

Γ̂ = V[θ̂]

and

v̂ar{θ̂} = (F̂′(V[θ̂])−1F̂)−1

where F̂
p∗×q

= ∂vech Σ[θ]
∂θ′ |θ=θ̂ and q is the number of parameters in θ

Note: As previously mentioned, A & A (1988, 1990) show that as

n→∞ (and innocuous identification conditions holding) and any

distribution for x

• λ̂LS and λ̂ML → λ and v̂ar{λ̂LS} and v̂ar{λ̂ML} still unbiased

estimates

• `(θ̂ML; S)→ χ2
p∗−q

q(θ̂LS ; S)→ χ2
p∗−q

w(θ̂IRLS ; θ̂IRLS ,S)→ χ2
p∗−q
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If additionally, e (errors) are Np,

• ψ̂LS and ψ̂ML → ψ

and v̂ar{ψ̂LS} and v̂ar{ψ̂ML} still unbiased estimates

Proc Calis

(see SectIVB.sas)

• Use method = ml (to get θ̂ML)

or method = gls (to get θ̂IRLS ∼= θ̂ML)

• Use LINEQS and write all equations

• Use STD to define variances of factors and errors

• Use COV to define covariances of factors (generally errors

uncorrelated)

• Use BOUNDS to constrain estimates (such as var{e1} ≥ 0)
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ex Stat 2301 Grades

I think we have two factors (daily effort and knowledge mastery).

Specifically, I want to test my theory:

• Follow-up (pre-cursor to SEM): Does the Effort factor influence the

Knowledge Mastery factor?

• Follow-up (pre-cursor to SEM): Is there a common factor that

influences both Effort and Knowledge Mastery?
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IV.C Structural Equation Modeling (SEM)

[Sources: Latent Variable Models and Factor Analysis: A Unified Approach

by Bartholomew, Knott, and Moustaki; Principles and Practice of Structural

Equation Modeling by Kline; Structural Equations with Latent Variables by

Bollen]

• As noted earlier, a latent variable model is generally called a

structural equation model (SEM) when relationships between latent

factors are being considered.

• Common software: Mplus (standalone, expensive), AMOS (part of

SPSS system), SAS (Proc Calis), R (lavaan package is good, but

comparitively limited)

• Much of the terminology, motivation, and software used for CFA

extends to SEM
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Concepts Important to SEM

• Sample Size Rule of Thumb

– n/q > 20: ideal

– n/q > 10: livable

• Variable types

– exogenous: predictor variable; “causes” of exogenous variable

are unknown (“of external origin”)

– endogenous: the “effect” of another variable (“of internal

origin”); can also be the “cause” of another variable
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• Causality (the Holy Grail)

– If we want to argue for causality in X → Y , all the following must

be met:

1. X precedes Y in time

2. the presumed unidirectionality (X → Y ) is plausible, while the

alternatives (X ← Y and X 
 Y ) are not

3. the relation does not disappear when external variables such as

common causes of both X and Y are held constant

72



• Recursive vs. Nonrecursive Models

– Recursive models: unidirectional effects and uncorrelated

disturbances/errors; could be fit with regression techniques

– Nonrecursive models: bidirectional effects, feedback loops,

and/or correlated disturbances/errors; cannot be fit with

regression techniques

Figures adapted from Figure 5.1 of Kline (1998).
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• Direct and Indirect Effects

– In the path diagram below, the variable Achievement acts as

both a predictor (“cause”) and a response (“effect”); such

variables are called mediator variables

Figure adapted from Figure 3.1 of Kline (1998).

– When mediator variables are included in an SEM, we are

generally interested in both direct and indirect effects.
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– If the estimated coefficients given above are standardized

coefficients, then:

∗ Direct effect of Verbal Ability on Delinquency is -0.5 (i.e., a 1

standard deviation increase in Verbal Ability has a direct

effect of a 0.5 standard deviation DECREASE in

Delinquency)

∗ Indirect effect of Verbal Ability on Delinquency is (0.3)(-0.7)

= -0.21

∗ Total effect of Verbal Ability on Delinquency is -0.5 + (-0.21)

= -0.71 (i.e., a 1 sd increase in Verbal Ability has a total

effect of a 0.71 sd DECREASE in Delinquency)
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• Equivalent Models

– After fitting a “final” model, it is important to consider

potentially equivalent models before making strong assertions

about your hypothesis

– Three models for cardiac surgery patients that are equivalent in

terms of fit:

Figures adapted from Figure 5.5 of Kline (1998). (Manifest variables omitted from diagram)
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Example: Motivation for P.E. class in middle school (AM=amotivation,

ER=external motivation,. . . ,IMA=intrinsic motivation to accomplish)

First-order CFA

χ2 = 619.796 (df = 209)

χ2/df = 2.966 (RoT: < 3)

CFI = 0.958

RMSEA = 0.039

Second-order CFA #1*

χ2 = 629.284 (df = 218)

χ2/df = 2.887 (RoT: < 3)

CFI = 0.958

RMSEA = 0.038

Second-order CFA #2*

χ2 = 629.284 (df = 218)

χ2/df = 2.887 (RoT: < 3)

CFI = 0.958

RMSEA = 0.038
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