
V. Classification and Clustering

V.A. Discriminant (and Classification) Analysis

So-called “discriminant analysis” has two basic goals:

1. Describe the separation of groups using p-variate observations on

observations within groups

2. Prediction — allocate observations from unknown groups into one

of the groups.

Often the first task is referred to as “discriminant analysis” or

“canonical discriminant analysis.”

Second task called “discriminant analysis”, “classification analysis”,

“allocation”, or “supervised classification.” ← machine learning term

We’ll refer to task (1) as “discriminant analysis” and task (2) as

“classification analysis.”
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Note that both tasks require information on group membership.

“Cluster Analysis” is a different method which assumes no formal

group membership, but rather looks for natural clusters of observations.

In machine learning, what we call “classification analysis” is called

“supervised classification,” and what we call “cluster analysis” is called

“unsupervised classification” or “unsupervised clustering.”

→ “Supervised/unsupervised” refers to whether or not group

membership from some “training data” is given
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V.A.i. Describing Group Separation

Mostly review . . .

• Separation of Two Groups

x1 ∼ N(µ1,Σ)

x2 ∼ N(µ2,Σ)

a = S−1
p` (x̄1 − x̄2) contains the discriminant function coefficients for

the discriminant function:

z = a′x

→ z = a′x is the linear combination of the x’s that maximizes the

distance between transformed group means

a = argmax
b6=0

[b′(x̄1 − x̄2)]2

b′Sp`b
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• Separation of g groups

x1 ∼ N(µ1,Σ)

x2 ∼ N(µ2,Σ)

...

xg ∼ N(µg,Σ)

Consider s = min(g − 1, p) different discriminant functions which

describe the separation of the g group means in the s-space. The s

functions are ai, i = 1, . . . , s, the s eigenvectors of E−1H.

– When group means are collinear, only one discriminant function is

needed to describe separation of means.
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– When group mean vectors have “essential dimension” of only r < s,

we need only r of the discriminant functions to describe group

separation.

∗ E.g., means lie on a 2-D disc ⇒ r = 2;

means lie in a 3-D ellipse ⇒ r = 3; etc.

∗ “Essential dimension” of group means indicated by λ1, . . . , λs.

When
∑r

i=1 λi∑s
i=1 λi

> c (where c is .80, .85, .90, etc.)

⇒ “essential dimension” is r.

Goals:

1. Identify variables important to the separation of the groups

2. Project data onto lower-dimensional space that is optimal for

illustrating group separation (i.e., plot z1 = a′1x vs. z2 = a′2x)

5



Interpreting Discriminant Function Coefficients

• Use standardized coefficients

– 2 group case:

a∗ = D1/2a where D =


s11 0

. . .

0 spp


– g group case:

a∗i = D1/2ai, i− 1, . . . , s

where D =
1

νE


e11 0

. . .

0 epp


=

1

νE
diag(E) [or

1

νW
diag(W)]
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• Don’t use corr(xi, z1) which is proportional to the univariate t-test

or F -test used to compare group means for xi only (ignoring

presence of xi′ , i
′ 6= i)
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ex Football helmet data (see p. IV. 11)

3 groups of subjects:

group1 = high school football players

group2 = college football players

group3 = non-football players
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V.A.ii. Foundational Classification Tools: LDA, QDA, KNN

Object: Use measurements x
p×1

on observations from known groups

G1, . . . , Gg in order to create classification rule for allocating or

assigning observations of unknown membership to one of the groups.

ex Use academic information from students who graduated (and who

dropped out) in order to predict which applicants are likely to graduate.

ex Use financial information obtained from loan defaulters and

non-defaulters to predict whether or not a future loan applicant should

be given a loan.

We’ll start with 2 groups and then extend to the g > 2 scenario.
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Two-Group Classification

Let the random vector x measured on each observation in group

Gi (i = 1, 2) have density fi(x). We will assign each observation x to

“predicted group” Ĝ1 or Ĝ2.

Some terms:

• Misclassification rates

Pr{2|1} = Pr{x ∈ Ĝ2|x ∈ G1}

= Pr{erroneously assigning an observation from G1 into Ĝ2}

Pr{1|2} = Pr{x ∈ Ĝ1|x ∈ G2}
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• Prior probabilities

p1 = Pr{observation comes from group G1}
p2 = Pr{observation comes from group G2}

ex We know that 95% of a class of cysts are benign (5%

malignant)

⇒ p1 = .95

p2 = .05

• Cost of misclassification

C{2|1} = cost of erroneously assigning an x from G1 into Ĝ2

C{1|2} = cost of erroneously assigning an x from G2 into Ĝ1

ex Calling a malignant tumor “benign” (false negative) is worse

than calling a benign tumor “malignant” (false positive)
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So . . .

Pr{x is correctly assigned to G1} = Pr{1|1} · p1

Pr{x is correctly assigned to G2} = Pr{2|2} · p2

Pr{x is incorrectly assigned to G1} = Pr{1|2} · p2

Pr{x is incorrectly assigned to G2} = Pr{2|1} · p1

An “optimal” classification rule minimizes the “expected cost of

misclassification” (ECM) given by

ECM = c{2|1} · Pr{2|1} · p1 + c{1|2} · Pr{1|2} · p2
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• ECM is minimized with the rule

Ĝ1 = {x : p1f1(x) c{2|1} > p2f2(x)c{1|2}}

and (1)

Ĝ2 = {x : p1f1(x) c{2|1} < p2f2(x)c{1|2}}

Note: An observation has an increased tendency to be assigned to

Ĝ1 when:

– cost of misclassifying an observation from G1 (c{2|1}) is large

– density f1(x) is large (i.e., G1 looks “likely”)

– large proportion of observations actually come from G1
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Note:

• Equal misclassification costs

Ĝ1 = {x : p1f1(x) > p2f2(x)}

and (2)

Ĝ2 = {x : p1f1(x) < p2f2(x)}

• Equal misclassification costs and prior probabilities

Ĝ1 = {x : f1(x) > f2(x)}

and (3)

Ĝ2 = {x : f1(x) < f2(x)}
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Approach Based on Discriminant Function

Fisher (1936) proposed using a = S−1
p` (x̄1 − x̄2) to predict group

membership. (Recall a defines a new axis with best separation of

groups when Σ1 = Σ2.)

Suppose we wish to assign x0 to Ĝ1 or Ĝ2.

• Assign x0 to Ĝ1 if:

z0 = a′x0 is closer to z̄1 = a′x̄1 than z̄2 = a′x̄2

or

z0 >
1
2 (z̄1 + z̄2)

So that the rule is

Ĝ1 =

{
x : (x̄1 − x̄2)′S−1

p` x >
1

2
(x̄1 − x̄2)′S−1

p` (x̄1 + x̄2)

}
and (4)

Ĝ2 =

{
x : (x̄1 − x̄2)′S−1

p` x <
1

2
(x̄1 − x̄2)′S−1

p` (x̄1 + x̄2)

}
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Though originally proposed as a distribution-free approach, when

(i) f1 and f2 are normal densities

(ii) covariance matrices associated with f1 and f2 are equal (Σ1 = Σ2)

(iii) p1 = p2

(iv) c{1|2} = c{2|1}

then

Fisher’s rule (4) is equivalent to rule (3) and is optimal in the

sense of minimizing the probability of misclassification (and

ECM).
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For the case of p1 6= p2 Welch (1939) extended Fisher’s rule so that our

rule is:

Ĝ1 =

{
x : (x̄1 − x̄2)′S−1

p` x >
1

2
(x̄1 − x̄2)′S−1

p` (x̄1 + x̄2) + ln
p2

p1

}
and (5)

Ĝ2 =

{
x : (x̄1 − x̄2)′S−1

p` x <
1

2
(x̄1 − x̄2)′S−1

p` (x̄1 + x̄2) + ln
p2

p1

}
Thus when (i), (ii), and (iv) above hold, rule (5) is equivalent to

rule (2) and is optimal in the sense of minimizing the probability of

misclassification (and ECM).
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Misclassification costs can be incorporated using rule:

Ĝ1 =

{
x : (x̄1 − x̄2)′S−1

p` x >
1

2
(x̄1 − x̄2)′S−1

p` (x̄1 + x̄2) + ln
p2 c{1|2}
p1 c{2|1}

}
and (6)

Ĝ2 =

{
x : (x̄1 − x̄2)′S−1

p` x <
1

2
(x̄1 − x̄2)′S−1

p` (x̄1 + x̄2) + ln
p2 c{1|2}
p1 c{2|1}

}
Then when (i) and (ii) above hold, rule (6) is equivalent to rule (1) and

is optimal in the sense of minimizing ECM.
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Notes:

1. When (i) normality and (ii) Σ1 = Σ2 do not hold, the approaches

rule (4), rule (5), and rule (6) may be somewhat reasonable, but

they are not optimal. For brevity, we move on to the general

g-group case (g ≥ 2) to discuss approaches when (i) and/or (ii) are

invalid. (Of course, these apply to the g = 2 case.)

2. For simplicity of discussion, we now consider the equal cost of

misclassification case. (Unequal costs substantially complicates the

problem when g > 2.) Johnson and Wichern provide a good

discussion of the unequal costs scenario.
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g-group Classification (g ≥ 2)

Linear Classification Functions (Σ1 = Σ2 = · · · = Σg)

Simple idea for Σ1 = · · · = Σg case:

Assign x to group Ĝi if the multivariate (Mahalanobis-like)

distance between x and x̄i is minimized.

Formally,

assign x to group Ĝi′ if

D2
i (x) = (x− x̄i)

′S−1
p` (x− x̄i)

is minimized when i = i′.

Note,

D2
i (x) = x′S−1

p` x︸ ︷︷ ︸
same for
all Gi—

can be ignored

−2 x̄′iS
−1
p` x︸ ︷︷ ︸

linear fcn.
of x

+ x̄′iS
−1
p` x̄i︸ ︷︷ ︸

doesn’t
involve x—

like an intercept

for ith group
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Ignoring first term of D2
i (x) and multiplying by − 1

2 , we obtain the

“linear classification functions”

Li(x) = x̄′iS
−1
p`︸ ︷︷ ︸

c′
i:

defines
linear comb.

x−1

2
x̄′iS
−1
p` x̄i︸ ︷︷ ︸

c0,i:

“intercept”
or

“constant”

, i = 1, . . . , g

Our “linear classification rule” is:

Assign x to Ĝi′ if Li(x) is maximized when i = i′.

This rule minimizes probability of misclassification when densities

f1(x), . . . , fg(x) are normal with equal priors p1 = · · · = pg.

If prior probabilities are known (and unequal) and densities are normal,

the linear classification functions are modified to be
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L∗i (x) = x̄′iS
−1
p`︸ ︷︷ ︸

c′
i:

defines
linear comb.

x−1

2
x̄′iS
−1
p` x̄i + ln pi︸ ︷︷ ︸
c0,i:

“intercept”
or

“constant”

, i = 1, . . . , g

and our optimal (minimal-probability-of-misclassification) rule is:

Assign x to Ĝi′ if L∗i (x) is maximized when i = i′.

Note:

• The Li(x) functions can be obtained without parametric

assumption — merely minimizes a distance D2
i . (Rule is optimal

for normal data when p1 = · · · = pg.)

• The L∗i (x) functions require normality for f1(x), . . . , fg(x) to

derive. (Rule is optimal for normal data.)

• While “discriminant analysis” requires only a few of the

s = min(p, g − 1) discriminant functions, “classification analysis”

requires creation and use of all g classification functions.
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Quadratic Classification Functions (Σi’s not equal)

When covariance matrices are unequal, observations tend to be

classified too frequently in the groups with “small” variance-covariance

matrices.

Simple idea for Σ1, . . . ,Σg not all equal:

Assign x to group Gi if the multivariate distance

D2
i (x) = (x− x̄i)

′S−1
i (x− x̄i)︸ ︷︷ ︸

quadratic function of x

that cannot be reduced
to a linear function

Thus, rules based on Si called “quadratic classification rules.” Rule is

reasonable but not optimal.
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Assuming normality for f1(x), . . . , fg(x) with prior probabilities

p1, . . . , pg, we can derive our optimal

(minimal-probability-of-misclassification) rule:

Assign x to Ĝi′ if

Qi(x) = ln pi −
1

2
ln |Si| −

1

2
(x− x̄i)

′S−1
i (x− x̄i)

is maximized when i = i′.
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Nonparametric Classification Rules

• k Nearest Neighbors Classification Rule

– Calculate distance of observation x to all other points xi 6= x:

(x− xi)
′S−1
p` (x− xi)

– ki of the k nearest neighbors are from group Gi, so
∑g
i=1 ki = k

– Rule:

Assign x to Ĝi if ki = max
j
kj (If there is a tie for largest ki, do

not classify x into any Ĝi)

∗ Rule assumes pi = ni

n , i = 1, . . . , g. If pi 6= ni

n , consider the

revised rule:

Assign x to Ĝi if kipi
ni

= max
j

kjpj
nj

– Choice of k

∗ Use k with best error rate

∗ k ≈ √ni (Loftsgaarden and Quesenberry, 1965)
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• Classification Based on Density Estimates

– Use kernal density estimators to obtain f̂1(x), . . . , f̂g(x)

– Rule:

Assign x to group Ĝi′ if pif̂i(x) is maximized when i = i′.
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Evaluating Classification Functions

AER = Actual error rate (aka “test error rate”)

= Probability that classification functions based on current

sample will misclassify a future observation.

→ Want an estimate of AER

• Resubstitution

Use classification rules based on x1, . . . ,xn to predict group

membership for each observation x1, . . . ,xn

– Among the ni observations from group Gi, nij are classified

into Ĝj so that ni =
∑g
j=1 nij

– APCCR = Apparent correct classification rate

=
∑g

i=1 nii

n =
total # correctly classified

total # of observations
– APER = Apparent error rate

= 1−
∑g

i=1 nii

n = 1− APCCR

APER underestimates AER since observations used to create

rules also used to evaluate rules
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• Holdout Method (aka “Crossvalidation” or “n-fold crossvalidation”)

– All but one observation (xi) is used to create the classification rule

– xi is classified into one of the g groups using the rule just calculated

– Repeat process for i = 1, . . . , n

– Among the ni observations from group Gi, nij are classified into Ĝj

– “Expected AER” = 1−
∑g

i=1 nii

n is a better estimate of AER.
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• k-fold crossvalidation (e.g., 10-fold CV)

– Process:

∗ Break training data into k random “folds”

∗ Treat each holdout fold as test data, fitting model to the

remaining k − 1 folds

∗ Using fitted model, classify observations in the holdout fold and

calculate test error (“Expected AER”)

∗ Repeat process for i = 1, . . . , k and use mean test error across all

k folds as k-fold CV estimate of the test error

– Disadvantage of k-fold CV (k < n) vs. hold-one-out CV

∗ Estimated test error rate biased high due to only k−1
k n

observations used to fit model

– Advantages of k-fold CV (k < n) vs. hold-one-out CV

∗ Lower computational cost — k model fits instead of n

∗ Some claim (??) potential lower variance in estimate of test error

rate due to less correlation in the k estimates
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ex Football helmet data

– Evaluate each of the following rules using resubstitution and

crossvalidation

∗ Linear classification rule

∗ Quadratic classification rule

∗ 5 nearest neighbors rule

ex Olive Data (8 areas)

– Linear classification rule

(priors proportional to sample size)
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V.A.iii. “Modern” Classification Tools: Trees, Random

Forest, Boosting, SVM, Naive Bayes

V.A.iii.a. Trees & Random Forest

Basic Approach for Forming Classification Trees

• Beginning with all n observations in one group or root node

• Find a predictor variable x and an associated cutoff criterion such

that splitting the n subjects into the two groups will minimize the

impurity (diversity) within each of the two child nodes

• Continue splitting child nodes into new generations

• Stopping/pruning rules based on cross-validation
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Criteria for choosing optimal splits

1. Prior probabilities p1, . . . , pk associated with each group

2. Misclassification cost for classifying an observation from group Gi

into group Gj (for i, j = 1, . . . , k)

• messy for k > 2

3. Measure of impurity that is appropriate to scenario

• Gini index is common
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Gini index

Impurity for node A:

IA =

k∑
i=1

pi|A(1− pi|A) (7)

where pi|A is the probability that an observation is in group Gi given

that it is classified into node A

• IA ≈ 0 when each of p1|A, p2|A, . . . , pk|A is either near zero or near

1 (i.e., observations in a node are predominantly from one group)

• pi|A = pi(niA/ni)∑k
i=1 pi(niA/ni)

– pi: prior probability for Gi

– ni: number of observations in Gi

– niA: number of observations from Gi that are in node A

– Note: if prior probabilities are proportional to the size of the

group Gi or “PPS” (e.g., training data is random sample from

population of interest) then pi|A = niA

nA
, where nA = number of

observations in node A.
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Using Impurity to Choose Optimal Split

Probability of an observation being in node A:

pA =
k∑
i=1

pi(niA/ni)
PPS
= nA/n

Optimal split of parent node A into two child nodes AL and AR

maximizes change in impurity:

∆I = pAIA − (pAL
IAL

+ pAR
IAR

),

• ∆I guaranteed to be ≥ 0

ex Predict a country’s global region from its demographics
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Random Forest

• Bagging: build ensemble of trees based on bootstrapped samples of

training data (let each tree “vote” on prediction)

• Random Forest: similar to bagging, but at each split, only m of the

total p predictors are considered as splitting variable

– m = p: RF = Bagging

– m < p: Leads to an ensemble that is less correlated across trees

⇒ (generally) more stable predictions with lower test error

– Choosing m:

∗ Classification: m ≈ √p
∗ Regression (quantitative response): m ≈ p/3
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– Checking variable importance: calculate total decrease in node

impurities from splitting on the variable, averaged over all trees

ex Predict a country’s global region from its demographics
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V.A.iii.b. Boosting

Rough idea (details omitted)

• Like bagging in that we use multiple trees, but trees are formed

sequentially instead of in parallel

– “Weak learner” trees are generally a single split or “stump”

– The speed of learning can be adapted—slow learning generally

yields better results

• Begin with all observations in the training set having equal weights

• Observations that were misclassified in the previous iteration are

upweighted

ex Predict a country’s global region from its demographics
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• xgboost: Variation of boosting that fits trees to the residuals from

the previous model (instead of updating weights) to adapt each

successive tree

– When data are traditional data tables, xgboost has been the most

successful tool for classification problems (e.g., Kaggle competitions)

∗ For “unstructured” data like text, images, video, speech: neural

networks are generally the best performers

– Implementing xgboost in R can be complicated

39



V.A.iii.d. Support Vector Machines (SVM)

Maximal Margin Classifiers (aka Separable Linear SVM)

Consider p-dimensional observations from two groups (labeled y = −1

and y = 1...multi-class SVM considered later). Suppose that the groups

are neatly separated by a (p− 1)-dimensional hyperplane defined by:

β0 + β1X1 + β2X2 + . . .+ βpXp = 0

• Problem: if there exists one such hyperplane, there exist an infinite

number

• Maximal margin hyperplane is the hyperplane with the largest

distance to the data

– separating hyperplane depends only on a small number of

points of data (as few as 3)

– maximal margin classifier may be overfitting the data
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Example:

Source: Burges, 1998, Data Mining and Knowledge Discovery. b=intercept, w =vector of slopes.

• Finding the maximal margin classifier:

– Maximize margin M subject to

∗
∑p
j=1 β

2
j = 1

∗ yi(β0 + β1X1 + β2X2 + . . .+ βpXp) > M for all i = 1, ..., n

• Points defining the hyperplane (≥ 3) are called support vectors
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Support Vector Classifiers (aka Non-Separable Linear SVM)

Usually, groups are not perfectly separable, and even if they are, the

separating hyperplane (solid line below) may be overly influenced by

only one or two points.

• Can we do better out of sample prediction with another classifier

(like the dotted line above)?

42



Finding the support vector classifier:

• Maximize margin M subject to

–
∑p
j=1 β

2
j = 1

– yi(β0 + β1X1 + β2X2 + . . .+ βpXp) ≥M(1− εi)
– εi ≥ 0

–
∑n
i=1 εi ≤ C

• ε1, . . . , εn are slack variables that allow observations to cross the

margin boundaries (or even the hyperplane) subject to a total slack

budget C

– εi > 0⇒ observation on wrong side of the margin

– εi > 1⇒ observation on wrong side of the hyperplane
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Source: Burges, 1998, Data Mining and Knowledge Discovery
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• Budget C = 0:

– No violations of margin allowed

– Yields maximal margin classifier

• As budget C increases:

– More flexibility with outliers (observations can violate the

margin or hyperplane)

– Margin gets wider

– More observations (those on margins and those violating

margin) affect the classifier—more support vectors...but still

unaffected by all other observations

– More bias / less variance

• svm function in R uses cost parameter instead of budget (C)

– cost inversely related to budget: higher costs ⇒ tighter budget

⇒ fewer violations allowed
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Support Vector Machines (aka Non-Separable Nonlinear SVM)

What about cases where nonlinear boundaries are needed for

classification?

• It can be shown that the classifier

f(x) = β0 + β1x1 + β2x2 + . . .+ βpxp

can be rewritten as

f(x) = β0 +
n∑
i=1

αix
′xi

= β0 +

n∑
i=1

αi〈x,xi〉

= β0 +
∑
i∈S

αi〈x,xi〉

where the final equality holds because αi = 0 unless xi is in the set

S of support vectors

46



• The inner product 〈x,xi〉 = x′xi can be generalized to K(x,xi)

– Linear kernel: K(x,xi) = x′xi

– Polynomial kernel of degree d: K(x,xi) = (k0 + γx′xi)
d

– Radial kernel: K(x,xi) = exp(−γ(x− xi)
′(x− xi))
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Support Vector Machines for Multi-class Problems

Two approaches when K > 2:

• One vs. One (this is used by svm in R)

– Run the
(
K
2

)
one-versus-one SVM classifications

– Assign test observation to the class to which it was most

frequently assigned

• One vs. All

– For k = 1, . . . ,K, run the SVM classification comparing class k

(coded as y = +1) to the collection of observations not in class

k (coded as y = −1)

– Assign test observation to the class which maximizes

fk(x) = β0k + β1kx1 + β2kx2 + . . .+ βpkxp

∗ fk(x) large ⇒ strong evidence for membership in class k

ex Predict a country’s global region from its demographics
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V.A.iii.d. Naive Bayes

Simple approach based on a strong (often unrealistic) assumption:

conditional on class, the predictor variables are independent. Although

the assumption is rarely valid, the classifier has been shown to do well

in large data scenarios such as text classification.

Suppose we have a categorical response variable y and categorical

predictor variables X1, . . . , Xp, with y coming from one of the classes

C1, . . . , Ck.
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P (Ck|X1 = x1, X2 = x2, . . . , Xp = xp) =

=
P (x1, x2, . . . , xp, Ck)

P (x1, x2, . . . , xp)

∝ P (x1, x2, . . . , xp, Ck)

= P (x1|x2, . . . , xp, Ck)P (x2, . . . , xp, Ck)

...

= P (x1|x2, . . . , xp, Ck)P (x2|x3, . . . , xp, Ck) . . . P (xp|Ck)P (Ck)

Cond.Ind.
= P (x1|Ck)P (x2|Ck) . . . P (xp|Ck)P (Ck)

= P (Ck)

p∏
i=1

P (xi|Ck)

ex Predict a mushroom’s class (edible vs. poisonous) using its facets
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V.C. Cluster Analysis (A Brief Intro)

Goal: Group objects that are similar into “clusters” using p-variate

observation x.

– Usually little is known about structure in the groups (or even if

groups exist)

– An “exploratory” method — little in the way of formal inference

– Most clustering approaches based on a measure of

similarity/dissimilarity among objects.

Distance/Dissimilarity for Interval-Scaled Data

Desired properties for a distance metric:

• d(x,x) = 0

• d(x,y) ≥ 0

• d(x,y) = d(y,x)
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1. Euclidean distance

d(x,y) =
√

(x− y)′(x− y)

Generally preferred to
√

(x− y)S−1(x− y) since S cannot be

computed without knowledge about group membership

2. Minkowski metric

d(x,y) = [
∑p
i=1 |xi − yi|m]

1/m

• m = 2→ Euclidian distance

• m = 1→ “Manhattan” or “city block” distance (sum of

component-wise distances)

→ Regardless of dissimilarity metric, scaling of variables can

dramatically affect nature of clusters (variables with large variances

have disproportionate influence on cluster formation)

• We usually standardize variables if they are not

commensurate
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Distance/Dissimilarity for Binary Data

e.g.

x′ =
[
0 1 1 0 0 0

]
y′ =

[
0 1 0 0 1 1

]
1. Euclidian Distance

d(x,y) =
√

(0− 0)2 + (1− 1)2 + · · ·+ (0− 1)2

=
√

0 + 0 + · · ·+ 1

=
√

# of mismatches
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2. Other Ideas

? Which pair has more in common: two people who DO speak Haitian

Creole or two people who don’t?
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ex Which 2 persons have most similar vocabulary?

d1(“Jim”, “Jane”) = 2
8 = .25

d1(“Bubba”, “Hoss”) = 1
8 = .125

d2(“Jim”, “Jane”) = 2
7 = .29

d2(“Bubba”, “Hoss”) = 1
2 = .5

d1 says that Bubba and Hoss have most similar vocabulary

d2 says that Jim and Jane have most similar vocabulary
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Hierarchical Clustering Methods

Divisive Hierarchical Methods

• Start with one large group and then successively break groups into

dissimilar subgroups

• Process continues until each object is its own group
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Agglomerative Hierarchical Methods

• More commonly used

• Start with each object in its own group and then successively

combine groups that are most similar (least dissimilar).

• Process continues until all objects in one group
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• Note that “distance/dissimilarity” between clusters must be

defined (more complicated than distance between objects)

– 3 Linkage Methods:

Source: JW
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– Single linkage cannot discern poorly separated clusters

– Single linkage can pick out long stringlike cluster (linking objects

into such non-elliptical clusters is known as “chaining”—generally

considered a disadvantage)
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Procedure:

1. Start with n clusters (the n observations) and an n× n symmetric

matrix of distances denoted D = (dik)

2. Search for most similar pair of clusters U and V (dUV is smallest)

3. Merge clusters U and V to create cluster “UV .”

• Delete row and column of D corresponding to clusters U and V .

• Add a row and column giving distances between cluster UV and

remaining clusters.

4. Repeat Steps 2 and 3 a total of n− 1 times (until all objects in a

single cluster). Record levels (distances) at which mergers take

place for dendrogram.
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k-means Method (Non-hierarchical)

Object: Find an optimal clustering for a given number of clusters.

• Need to start with either (i) an initial partitioning of the objects or

(ii) a set of k initial cluster means (“centroids”) or “seed points.”

Using one of the linkage (hierarchical) methods is a good way to

obtain an initial partition.

• Procedure:

1. Partition the objects into k initial clusters.

2. Assign each object to closest cluster centroid (using Euclidean

distance).

– Recalculate the centroid for the cluster receiving new object

and the cluster losing the object

3. Repeat Step 2 until no more reassignments occur.

• Hartigan (1975) gives rule-of-thumb for choosing k based on

decrease in within-group sum of squares when increasing k by 1.

61



ex Texas Cities

• Dendrograms for single, complete, and average linkage

• Use 4 clusters

• k-means (using complete linkage to obtain original partitioning)

• Look at groupings on PC1 vs. PC2 plot

• Do groupings make sense geographically using map?

ex U.S. Cities (with population between 1 and 5 million)

• Same as above . . . using 5 clusters

? Often useful to follow-up cluster analysis with a discriminant analysis

to describe the nature of the clusters.
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